1.7 Introduction to Proofs

- A proof: a valid argument that establishes the truth of a mathematical statement.
- In order to prove lemmas or theorems, the hypotheses of the theorems, axioms (postulates), definitions or previously proven theorems can be used.
- Some Terminologies

1. **Theorem:** a statement that can be shown to be true. A less important theorem is called a **proposition** sometimes.

2. Lemma: a less important theorem that is helpful in the proof of other results

3. **Corollary:** a theorem that can be established directly from a theorem that has been proved.

4. **Conjecture:** a statement that is being proposed to be a true statement. When a proof is correct, the conjecture becomes a theorem.

Methods for Proving Proofs

 Direct Methods: show that p → q is true by showing that if p is true, then q must also be true. So in order to show that q must also be true, we assume that p is true, and use axioms, definitions, and previously proven theorem, together with rules of inference.

Definitions

Recall the number system $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$. Then,

- 1. the integer *n* is even if $\exists k \in \mathbb{Z}$ such that n = 2k.
- 2. the integer *n* is odd if $\exists k \in \mathbb{Z}$ such that n = 2k + 1.

Example1

1. Use a direct proof to show that if n is an odd integer, then n^2 is odd.

2. Use a direct proof to show that the sum of two odd integers is even.

Contraposition:

Proofs that do not start with the premises and do not end with the conclusion are called **indirect proofs**. A useful type of the indirect proofs is known as **proof by contraposition**, which is based on the equivalence that $p \rightarrow q \iff \sim q \rightarrow \sim p$.

Example2

1. Use a proof by contraposition to show that if $n \in \mathbb{Z}$ and 3n+2 is odd, then n is odd. 2. Use a proof by contraposition to show that if $x + y \ge 2$, then $x \ge 1$ or $y \ge 1$, where $x, y \in \mathbb{R}$.

• Vacuous (or Trivial) Proofs

If we can show that an assumption is false, we will be done.

Example3

Show that P(0) is true, where P(n): if n > 1, then $n^2 > n$ for $n \in \mathbb{Z}$.

Contradiction:

1. If there is one proposition p, take a negation of p and then find a contradiction. This idea is based on the fact that if p is true, then $\sim p \rightarrow (r \land \sim r)$ is true.

2. For the conditional statement $p \rightarrow q$, assume that p and $\sim q$ is true. If we show that both $\sim p$ are true, we have a contradiction $p \land \sim p$. Simply Speaking, consider a negation of q and then find a contradiction of the assumption.

• Proofs of equivalence:

To prove a theorem that has $p\leftrightarrow q$, show that p
ightarrow q and q
ightarrow p are both true.

Example4

1. Use a proof by contradiction to show that (1) $\sqrt{3} \notin \mathbb{Q}$ (2) the sum of an irrational number and rational number is irrational. 2. Prove that if $x \notin \mathbb{Q}$, then $1/x \notin \mathbb{Q}$. 3. Assume that $1 \le n \in \mathbb{Z}$. Show that *n* is even $\Leftrightarrow 5n + 6$ is even.