
1.8 Proof Methods and Strategy

In this section, we consider more methods and how to �nd

appropriate strategies, when we prove mathematical theorems.

After this section, we will study Mathematical induction,
which is an extremely useful method for proving statements of

the form ∀nP(n), whenever D = N.

1 Proof by Cases:

In order to prove a conditional statement of the form

(p1∨p2∨·· ·∨pn)→ q, the tautology can be used as a rule of

inference

(p1∨p2∨·· ·∨pn)→ q⇔ (p1→ q)∧(p2→ q)∧·· ·∧(pn→ q) .

Proving this rule each of the n conditional statements pi → q

with i = 1,2, · · · ,n individually is called proof by cases.
2 Exhaustive proof:

is to prove theorems by examining a relatively small number of

examples. This is a special type of proof by cases.



Example1

1. Use an exhaustive proof to prove that (n+1)3 ≥ 4n if n is a

positive integer with n ≤ 3.

2. Prove that n2 ≥ 2n for any integer n ≥ 2. Don't use a proof by

exhaustion.

3. Use a proof by cases to show that |x y |= |x | |y |.

Note that we can use without loss of generality (WLOG)
to shorten the proof for #3 in the previous example. When the

proof for a case can be easily applied to all others, or that all

other cases are equivalent, we can use WLOG.



Existence Proofs

A proof of a proposition of the form ∃x P(x) is called an

existence proof.

1 Constructive: ∃x P(x) is proved by �nding an element a called

a witness such that P(a) is true.

2 Nonconstructive: we do not �nd a witness a directly. Instead

of it, we use proof by contradiction.

Example2

1. Show that there is a positive number that can be written as its

square.

2. Show that ∃x ∈Qc and ∃y ∈Q such that xy ∈Q.

3. Show that ∃x ∈Q and ∃y ∈Qc such that xy ∈Qc .



Uniqueness Proofs

A uniqueness proof consists of two parts:

1 ∃: We show that ∃x with the desired property

2 !: We show that if both x and y have the desired property,

x = y . Equivalently, if x 6= y , they do not have the desired

property.

Example3

1. Show that ∃!x such that ax+b = 0 for a 6= 0, b ∈ R
2. Show that if n is an odd integer, ∃!k ∈ Z such that

n = (k−2)+(k+3).



Some remarks

Theorem

FERMAT'S LAST THEOREM

The equation xn+ yn = zn has no solutions in integers

x 6= 0, y 6= 0, z 6= 0, whenever n is an integer with n > 2.

In 17th century, FERMAT established his last theorem without

proving. Since then, many mathematicians have tried to prove

his last theorem. A correct proof was found by Andrew Wiles's

paper (over hundreds of pages) in the 1990s.

There are still many open mathematical questions for pure

mathematics and applied mathematics.


