2. Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Department of Mathematics & Statistics

ASU

jahn@astate.edu

- Sets
- **2** Set Operations
- Functions
- Sequences and Summations
- Oardinality of Sets
- Matrices

2.1 Sets

Definition

A Set is a well-defined collection of distinct objects, called elements or members of the set. Well-defined means that there is a clear rule that enables us to determine whether a given object is an element of the set.

Notations

If a belongs to A, we write $a \in A$. If not, we write $a \notin A$. Usually, sets are denoted by uppercase letters such as A, B, \cdots and elements are denoted by lowercase letters such as a, b, \cdots .

• Three ways to describe a set

1. List(Roaster) method: all elements are listed between braces. Ex: $A = \{a, b, c\}$

2. Set builder notation: by stating the property that elements must satisfy. Ex: $\mathbb{R}^+ := \{x \in \mathbb{R} \mid x \ge 0\}$ 3. Interval notation, especially for real numbers. Ex: [a, b] or [a, b)

Definition

A = B if two set A and B have the same elements regardless their order.

Example1

1.
$$\{1,3,5\} = \{1,5,3\} = \{1,1,3,5,5\}$$

Venn Diagram

is convenient to understand relations between sets. The universal set U is represented by a rectangle. Normally circles are used to represent certain sets and points are used to represent the particular elements of the set.

Example2

Use to a Venn Diagram to show that if $A \subset B$ and $B \subset C$, then $A \subset C$.

Notations for the empty (null) set: Ø or {}.
Don't be confuse {} and {Ø}. Those are not the same!

Definition

The set A is a subset $(A \subseteq B)$ if every element of A is also an element of B.

• We can use the quantification to define a subset:

$$\forall x (x \in A \rightarrow x \in B)$$

Theorem

For every set S, (1) $\{\} \subseteq S$ (2) $S \subseteq S$.

 When we want to emphasize that A is a subset of B but A ≠ B, we write A ⊂ B and say that A is a proper subset of B. We can also use the quantifications to define a subset:

$$\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$$

is true.

Definitions

1. The cardinality of a set S means the number of elements in the set S. It is denoted by |S| and $|S| = n \ge 0$ for all integers. 2. If n is the finite number, then S is called a finite set. If S is not finite or $(n = \infty)$, then S is called an infinite set.

Example3

1. Let S be the set of English alphabet letters. |S|=26. 2. $|\emptyset| = 0$ 3. $S = \{s \in \mathbb{N} \mid 0 \le s \le 5\}$ Then |S| = 54. $|\mathbb{Z}| = \infty$.

Definitions

For a given set S, the power set of the set S is the set including all subsets of the set. The power set of S is denoted by 𝒫(S).
If |S| = n, then |𝒫(S)| = 2ⁿ.

Example4

1. Let $S = \{0, 1, 2\}$. Then find $\mathscr{P}(S)$ and $|\mathscr{P}(S)|$.

jahn @astate.edu

Definitions

1. The ordered n-tuples (a_1, a_2, \dots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its *n*th element. In particular, ordered 2-tuples are called ordered pairs.

2. The **Cartesian product** of A and B, denoted by $A \times B$, is the set of all ordered pair (a, b) such that $a \in A$ and $b \in B$. Thus

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

Example5

1. $A = \{0, 1\}$ and $B = \{x, y, z\}$. Then find $A \times B$. 2. Show that $A \times B \neq B \times A$.