2.3 Functions

 In modern mathematics, we cannot develop mathematical theories without understanding functions (or mappings, or transformation, or operators)

Definitions

A function $f : A \rightarrow B$ relates each element of a set A with exactly one element of another set B.

1. We write b = f(a) if $\exists ! b \in B$ assigned by f to the element $a \in A$.

2. A: the domain of the function f and B: the codomain of f and the set of all images is called the range included in B.

• The vertical line test is useful to determine whether graphs are functions or not.

Example1

Determine if the following $f : \mathbb{R} \to \mathbb{R}$ is a function. (1) $f(x) = 1/x^2$ (2) $f(x) = \sqrt{x}$ (3) $f(x) = \pm \sqrt{-x^2 + 1}$.

Definitions

A function f: A → B is said to be 1-1 or injective if f(a) = f(b) implies that a = b for all a, b ∈ A.
A function f: A → B is said to be onto or surjective if for all c ∈ B, ∃a ∈ A such that f(a) = c.

Example2

1. Determine if the followings $f : \mathbb{Z} \to \mathbb{Z}$ are 1-1 or onto. (1) f(n) = n+1 (2) $f(n) = n^3$ (3) $f(n) = \lceil n/2 \rceil$. 2. Determine if the followings $f : \mathbb{R} \to \mathbb{R}$ are 1-1 or onto. (1) f(x) = 2x - 1 (2) $f(x) = x^2$ (3) $f(x) = (x^2 + 1) / (x^2 + 2)$.

Definitions

Let f and g be functions from A to \mathbb{R} .

1. For operators + and \cdot , f + g and f g are functions from A to \mathbb{R} defined for all $x \in A$ by

 $(f+g)(x) = f(x) + g(x), \quad (fg)(x) = f(x)g(x).$

2. For the operator \circ , the composition of $g : A \to B$ and $f : B \to C$, denoted by $f \circ g$ is defined for all $x \in A$ by

 $(f \circ g)(x) = f(g(x)).$

Example3

Let f and g be functions from \mathbb{R} to \mathbb{R} such that $f(x) = x^2 + 1$ and g(x) = 3x + 2. Then find the following: (1) f + g (2) fg (3) $f \circ g$ (4) g + f (5) gf (6) $g \circ f$.

Definitions

1. The floor function assigns to $x \in \mathbb{R}$ the largest integer that is less than or equal to x. The value of the floor function at x is denoted by $\lfloor x \rfloor \in \mathbb{Z}$.

2. The ceiling function assigns to $x \in \mathbb{R}$ the smallest integer that is greater than or equal to x. The value of the ceiling function at x is denoted by $\lceil x \rceil \in \mathbb{Z}$.

3. Let $f : A \rightarrow B$ and a function and let $S \subset A$. Then the image of S is denoted by f(S), i.e.,

$$f(S) = \{f(s) \mid s \in S\}.$$

Example4

1. Let $f(x) = \lfloor x^2/3 \rfloor$. Find f(S) if (1) $S = \{-2, -1, 0, 1, 2, 3\}$ and (2) $S = \{0, 1, 2, 3, 4, 5\}$ 2. Let $f(x) = \lfloor x^2/3 \rfloor$. Find f(S) if (1) $S = \{1, 5, 7, 11\}$ and (2) $S = \{2, 6, 10.14\}$.