2.4 Sequences and Summations

Sequences vs Sets

Sequences are **ordered** lists of elements, while sets are collections of elements regardless of order.

A finite sequence: {a₁, a₂, ..., a_n} (called a string) and an infinite sequence: {a₁, a₂, ..., a_n, ...}.

Definition

A sequence is a function f from $A \subset \mathbb{Z}$ to a set S. So the image of the integer n is denoted by $a_n = f(n)$. a_n is called a general term of the sequence. The sequence is denoted by $\{a_n\}$.

Example1

Write the first five terms of the sequence $\{a_n\}$ defined by $a_n = (-1)^n / n$. for $n \ge 1$.

Definitions

1. A geometric progression is a sequence of the form $a_n = ar^{n-1}$ for $n \ge 1$, where a is called the initial term and r is the common ratio. So $r = a_{n+1}/a_n$. 2. An arithmetic progression is a sequence of the form $a_n = a + (n-1)d$ for $n \ge 1$, where a is called the initial term and d is the common difference. So $d = a_{n+1} - a_n$.

Example2

1. Let
$$a_n = 2 \cdot (-3)^n + 5^n$$
. Then find (1) a_0 (2) a_4 .
2. Let $a_n = 2n + 1$. Then find (1) a_1 (2) a_3 .
3. Let $a_n = (n+1)^{n+1}$. Then find (1) a_0 (2) a_2 .
4. Let $a_n = \lfloor n/2 \rfloor$. Then find (1) a_1 (2) a_3 .

Definition

A recurrence relation for $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms for $n \ge n_0 \ge 0$.

Example3

For $n \ge 1$ 1. let $a_n = a_{n-1} + 3$. If $a_0 = 2$, then find (1) a_1 (2) a_3 . 2. let $a_n = a_{n-1}^2$. If $a_0 = 2$, then find the next five terms. 3. let $a_{n+1} = a_n + a_{n-1}$. (Fibonacci sequence) If $a_0 = 0$ and $a_1 = 1$, then find the next five terms. We use the Σ notation to express the sum of finitely (infinitely) terms:

$$a_m + a_{m+1} + \dots + a_n = \sum_{i=m}^n a_i = \sum_{j=m}^n a_j = \sum_{k=m}^n a_k = \dots,$$

where j is the index of summation and m is the lower limit and n is the upper limit.

Example4

What are the values of the following sums? (1) $\sum_{k=1}^{5} (k+1)$ (2) $\sum_{i=1}^{10} 3$ (3) $\sum_{j=0}^{8} (2^{j+1}-2^{j})$.

Example5

Compute the following double sums (1) $\sum_{i=1}^{2} \sum_{j=1}^{3} (2i+3j)$ (2) $\sum_{i=0}^{2} \sum_{j=1}^{3} ij$

Some Useful Summation Formula	
Sum	Closed form
$\sum_{k=0}^{n} \operatorname{ar}^{k}(r eq 0)$	$ \begin{array}{ c c c } & \text{If } n \neq \infty, \frac{a(r^{n+1}-1)}{r-1} \text{ for } r \neq 1, \\ & \text{If } n = \infty, \frac{-a}{r-1} \text{ for } r < 1. \end{array} $
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^n k^3$	$\left(\frac{n(n+1)}{2}\right)^2$

Example5

۲

Find the following sums 1. $\sum_{k=5}^{10} k$ (2) $\sum_{i=3}^{5} k^3$

Example6

1. Show that $\sum_{j=1}^{n} (a_j - a_{j-1}) = a_n - a_0$. This type of sum is called **telescoping sum**. 2. Find $\sum_{j=1}^{10} \frac{1}{j(j+1)}$. We need to use telescoping sum.