2.5 Cardinality of Sets

- It is easy to determine the cardinality of finite sets.
- How can we determine the cardinality of infinite sets? If we show that there exists bijection *f* from one set onto another, we can say that the two sets have the same cardinality.
- There are two types of infinite sets; one is a countably infinite set and another is a uncountably infinite set. For example,
- **1** Countable sets: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$.
- 2 Uncountable sets: \mathbb{R}, \mathbb{C} .

Definition

Let |A| be the cardinality of the set A. Then, $|A| = |B| \Leftrightarrow$ there is a one to one correspondence (bijection) from A onto B.

1. Countable sets are finite sets or have the same cardinality as

- N. When S is an infinite set, $|S| = \aleph_0$.
- 2. Uncountable sets are not countable sets.

Example1

- 1. Show that the set of positive even integers is a countable set.
- 2. Show that $\ensuremath{\mathbb{Z}}$ is a countable set.
 - However, \mathbb{R} is a uncountable set.
 - According to the continuum hypothesis, there is no cardinal number between \aleph_0 and $|\mathbb{R}|$.

- Matrices are used to solve linear systems.
- Matrices are used in models of communication networks and transportation systems and are used to compute approximations of PDEs.
- In this section, we go over matrix arithmetic.

- 1. A matrix is a rectangular array of elements (numbers).
- 2. A matrix with *m* rows and *n* columns is called an $m \times n$ matrix.
- 3. If m = n, a matrix is called square.
- 4. Let **A** and **B** be matrices. Then $\mathbf{A} = \mathbf{B}$ if they have the same number of lows and columns and the corresponding entries in every position are equal.

Let **A** be a matrix with its size $m \times n$

	a ₁₁	a ₁₂		a_{1n-1}	a _{1n}]
	a ₂₁	a ₂₂	•••	a _{2n-1}	a _{2n}
A =	•	÷	÷	÷	÷
	a_{m-11}	<i>a_{m-12}</i>	•••	a_{m-1n-1}	a _{m-1n}
	a _{m1}	a _{m2}	•••	a _{mn-1}	a _{mn}

The *i*th row of **A** is the $1 \times n$ matrix $[a_{i1}, a_{i2}, \dots, a_{in-1}, a_{in}]$ and the *j*th column of **A** is the $m \times 1$ matrix

<回> < E> < E>

• From the def. the (i, j)th element or entry of **A** is the element a_{ij} , that is, the number in the *i*th row and *j*th column of **A**.

Definition

Let $\mathbf{A} = [a_{ij}]$ be an $m \times n$ matrix. The **transpose** of \mathbf{A} , denoted by \mathbf{A}^t is the $n \times m$ matrix obtained by interchanging the rows and columns of \mathbf{A} . If $\mathbf{A}^t = [b_{ij}]$, then $b_{ij} = a_{ji}$ for $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, m$. If a square matrix $\mathbf{A}^t = \mathbf{A}$, \mathbf{A} is called symmetric.

Example1

Let

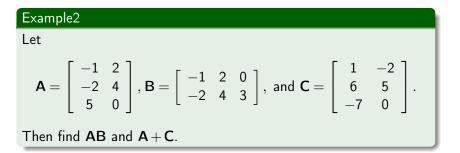
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 5 & 7 \\ 9 & 1 & -3 \\ -2 & 8 & 0 \end{bmatrix}$$

(1) What is the size of A? (2) What is the third column of A?

- (3) What is the second row of A? (4) What is A^t ?
- (5) Find the element of A in the (4,2)th position.

Sum+: Assume that A and B have the same size m×n. Then the sum of A and B, denoted by A + B is the m×n matrix that has [a_{ij} + b_{ij}].
 Product:: If A has the size m×k and B has the size k×n, then the product of A and B, denoted by AB is the m×n matrix.

The method to find **AB** will be explained.



Zero-one Matrices with Join, Meet, Product

 A matrix whose entries are either 0 or 1 is called a zero-one matrix. This matrix arithmetic is based on the Boolean operations ∧ and ∨, which operate on pairs of bits. Thus, we can define

$$b_1 \wedge b_2 = \left\{ egin{array}{cc} 1 ext{ if } b_1 = b_2 = 1, \\ 0 ext{ otherwise,} \end{array} egin{array}{cc} b_1 ee b_2 = \left\{ egin{array}{cc} 1 ext{ if } b_1 = 1 ext{ or } b_2 = 1, \\ 0 ext{ otherwise.} \end{array}
ight.$$

Definitions

Let $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ be $m \times n$ zero-one matrices. Then, 1. the join of \mathbf{A} and \mathbf{B} , denoted by $\mathbf{A} \vee \mathbf{B}$ is $a_{ij} \vee b_{ij}$ 2. the meet of \mathbf{A} and \mathbf{B} , denoted by $\mathbf{A} \wedge \mathbf{B}$ is $a_{ij} \wedge b_{ij}$ Let $\mathbf{A} = [a_{ij}]$ be an $m \times k$ zero-one matrix and $\mathbf{B} = [b_{ij}]$ be a $k \times n$ zero-one matrix. Then the Boolean product of \mathbf{A} and \mathbf{B} , denoted by $\mathbf{A} \odot \mathbf{B}$ is the $m \times n$ matrix with (i, j)th entry c_{ij} , where $c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \cdots \vee (a_{ik} \wedge b_{kj})$.

Let **A** be a square matrix and *r* be a positive integer. The *r*th Boolean power of **A** is the Boolean product of *r* factors of **A**. Then *r*th Boolean product of **A**, denoted by $\mathbf{A}^{[r]}$ is defined by $\mathbf{A}^{[r]} = \mathbf{A} \odot \mathbf{A} \odot \mathbf{A} \odot \cdots \odot \mathbf{A}$. We also define $\mathbf{A}^{[0]}$ to be \mathbf{I}_{n} .

Example3				
1. Let $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$				
1. Find (1) $\mathbf{A} \lor \mathbf{B}$ (2) $\mathbf{A} \land \mathbf{B}$ (3) $\mathbf{A} \odot \mathbf{B}$. 2. Find (1) $\mathbf{A}^{[2]}$ (2) $\mathbf{A}^{[3]}$ (3) $\mathbf{A} \lor \mathbf{A}^{[2]} \lor \mathbf{A}^{[3]}$.				