3.2 Growth of Functions

• When we analyze some algorithms, we may want to consider the number of steps. For example, assume that the number of steps to complete a mathematical problem of size *n* is given by $f(n) = 3n^2 + 4n - 1$. If we ignore constants and slower growing terms, we can say that f(n) depends on the dominating term n^2 for sufficiently large numbers *n*. How can we describe it, using a mathematical notation? The growth of functions can be written using big-*O* notation.

Definition

Let f and g be functions with the domain \mathbb{R} . We say that f(x) = O(g(x)) if there is a constant C > 0 and $k \in \mathbb{R}$ such that $|f(x)| \leq C |g(x)|$, provided that $x \geq k$. C and k are called witnesses.

• The growth of functions commonly used in Big-O estimates. Have a look at Figure 3 in page 211.

Theorem1

- Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, where $a_i \in \mathbb{R}$ for $0 \le i \le n$. Then $P(x) = O(x^n)$.
 - There are three important rules to find big-O notation.

Theorem2

1. Suppose that $f_1(x) = O(g_1(x))$ and $f_2(x) = O(g_2(x))$. Then $(f_1(x) + f_2(x)) = O(\max(|g_1(x)|, |g_2(x)|))$. 2. Suppose that $f_1(x) = O(g(x))$ and $f_2(x) = O(g(x))$. Then $(f_1(x) + f_2(x)) = O(g(x))$. 3. Suppose that $f_1(x) = O(g_1(x))$ and $f_2(x) = O(g_2(x))$. Then $(f_1(x) f_2(x)) = O(g_1(x)g_2(x))$.

Examples

Example

In problems 1-4, find witnesses C and k. 1. Let $f(x) = x^2 + 2x + 1$. Show that $f(x) = O(x^2)$. 2. Determine whether the followings can make f(x) = O(x). (1) $f(x) = 10^{10}x + 1$ (2) $f(x) = 10^{-6}x^2 + x + 2$ (3) $f(x) = 10\log x$ (4) f(x) = |x| (5) $f(x) = \lceil x/2 \rceil$ **3.** Let $f(x) = (x^2 + 1) / (x + 1)$. Then show that f(x) = O(x). **4.** Find the least integer *n* such that $f(x) = O(x^n)$. (1) $f(x) = 2x^3 + x^2 \log x$ (2) $f(x) = 3x^3 + (\log x)^4$ (3) $f(x) = (x^4 + x^2 + 1) / (x^3 + 1)$ (4) $f(x) = (x^4 + 5 \log x) / (x^4 + 1)$ **5.** Find the best corresponding big-O notation. (1) $(n^2+8)(n+1)(2)(n\log n+n^2)(n^3+2)$ (3) $(n!+2^n)(n^3+\log(n^2+1))$ (4) $n\log(n^2+1)+n^2\log n$ (5) $(n\log n+1)^2 + (\log n+1)(n^2+1)$ (6) $n^{2^n} + n^{n^2}$.