- When algorithms are implemented,
- they must always provide the correct answer.
- they are efficient.
 (1) Computational time (2) Computer memory
 - We consider the complexity of some algorithms in terms of the number of + and \times used.

Algorithm1 Matrix Multiplication $A = [a_{ij}] m \times k$ and $B = [b_{ij}]$ $k \times n$ for i = 1 : mfor j = 1 : n $c_{ij} = 0$ for q = 1 : k $c_{ij} = c_{ij} + a_{iq}b_{qj}$ return $C = [c_{ij}]$ • It follows from the algorithm that if two matrices **A** and **B** have their size $n \times n$, the number of operations used will be $O(n^3)$, since the actual total number of operations is $n^2(n-1)$.

Algorithm2 t = 0for i = 1:3for j = 1:4 t = t + ijend t = t + ij

• Since we need the finite number of operations, our big-*O* estimate will be *O*(1).

If i = 1 : m and j = 1 : m for any integers m > 0, then we can
estimate the number of operations, using O (m²).

 We consider a conventional algorithm (called nested multiplication (or Honers method) for a polynomial at x = a

$$P_n(x) = a_{n+1}x^n + a_nx^{n-1} + \dots + a_2x + a_1.$$

Its pseudocode is expressed as follows; $c = \{a_i\}_{i=1}^{n+1}$ is an array which contains all coefficients and *n* is the degree of P_n .

Algorithm3 Honer's method

```
function y = nested(c, n+1, x)
```

```
y = a_{n+1}
for i = n : -1 : 1
y = y * x + a_i
end
```

Note that the final value of y is $P_n(x)$. (1) Evaluate $P_2(x) = 3x^2 + 7x + 1$ at x = 2 by (1) by the usual way (2) Honer's method (2) How many \times and + are used to evaluate the polynomial at x = 2? Answer for both ways. • See the Table 2 (The computer time used by algorithms) in pp.228.

Example1

 What is the largest n for which one can solve within one second a problem using an algorithm that requires f(n) bit operations, where each bit operation is carried out in 10⁻⁹ seconds, with these function f(n).
 log n (2) n (3) nlog n
 n² (5) 2ⁿ (6) n!
 How much time does an algorithm using 2⁵⁰ operations need if each operation takes these amounts of time?
 10⁻⁶s (2) 10⁻⁹s (3) 10⁻¹²s