
When algorithms are implemented,

1 they must always provide the correct answer.
2 they are efficient.

(1) Computational time (2) Computer memory

We consider the complexity of some algorithms in terms of the
number of + and × used.

Algorithm1 Matrix Multiplication A = [aij ] m×k and B = [bij ]
k×n

for i = 1 :m
for j = 1 : n

cij = 0
for q = 1 : k

cij = cij +aiqbqj
return C = [cij ]



It follows from the algorithm that if two matrices A and B
have their size n×n, the number of operations used will be
O
(
n3), since the actual total number of operations is

n2(n−1).

Algorithm2
t = 0
for i = 1 : 3

for j = 1 : 4
t = t+ i j

end
end
t = t+ i j

Since we need the finite number of operations, our big-O
estimate will be O(1).
If i = 1 :m and j = 1 :m for any integers m > 0, then we can
estimate the number of operations, using O

(
m2).



We consider a conventional algorithm (called nested
multiplication (or Honers method) for a polynomial at x = a

Pn(x) = an+1x
n+anx

n−1+ · · ·+a2x+a1.

Its pseudocode is expressed as follows; c = {ai}n+1
i=1 is an array

which contains all coefficients and n is the degree of Pn.

Algorithm3 Honer’s method

function y = nested(c ,n+1,x)
y = an+1
for i = n :−1 : 1

y = y ∗ x+ai
end

Note that the final value of y is Pn(x).
(1) Evaluate P2(x) = 3x2+7x+1 at x = 2 by (1) by the usual way
(2) Honer’s method
(2) How many × and + are used to evaluate the polynomial at
x = 2? Answer for both ways.



See the Table 2 (The computer time used by algorithms) in
pp.228.

Example1
1. What is the largest n for which one can solve within one second
a problem using an algorithm that requires f (n) bit operations,
where each bit operation is carried out in 10−9 seconds, with these
function f (n).
(1) logn (2) n (3) n logn
(4) n2 (5) 2n (6) n!
2. How much time does an algorithm using 250 operations need if
each operation takes these amounts of time?
(1) 10−6s (2) 10−9s (3) 10−12s


