4.2 Integer Representation and Algorithms

 When we express integers, we usually use decimal notation. For example,

$$742 = 7 \times 10^2 + 4 \times 10 + 2.$$

However, it is convenient to use bases other than 10. We introduce the following theorem which is the most general case and then we will consider binary, octal, and hexadecimal expansions.

Theorem

Let b > 1 be an integer. Then if n is a positive integer, it can be expressed uniquely in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0,$$

where $k \ge 0$ is an integer, $a_0, a_1, a_2, \dots, a_k$ are nonnegative integers less than b and $a_k \ne 0$. b is called a basis.

Binary Expansions

are given, when we choose 2 as the basis. So each digit is either 0 or 1, since they are only nonnegative numbers less than 2.

Octal Expansions

are given with the basis 8. Each digit is 0, 1, 2, 3, 4, 5, 6, 7

Hexadecimal Expansions

are given with the basis 16. Each digit is 0,1,2,3,4,5,6,7,8,9,*A*,*B*,*C*,*D*,*E*,*F*.

Example

1. Convert the following decimal expansion of integers to a binary expansion: (1) 231 (2) 97644

2. Convert the following binary expansion to a decimal expansion: $(1) (11111)_2 (2) (101010101)_2$

3. Convert the following octal expansion to a binary expansion: (1) $(1604)_8$ (2) $(2417)_8$

4. Convert the following binary expansion to an octal expansion: (1) $(11110111)_2$ (2) $(1010101010101)_2$

5. Convert the following hexadecimal expansion to a binary expansion: (1) $(80E)_{16}$ (2) $(ABBA)_{16}$

6. Convert $(101101111011)_2$ from its binary expansion to its hexadecimal expansion.