6.4 Binomial Coefficients and Identities

 When we consider the expansion of powers of binomial expressions, i.e., (x + y)ⁿ for all integers n ≥ 0, the number of r-combinations is used for all coefficients of the expansion.

Theorem

THE BINOMIAL THEOREM

Let x and y be any variables with any integers $n \ge 0$. Then

$$(x+y)^{n} = \sum_{j=0}^{n} C(n,j) x^{n-j} y^{j}$$

= $C(n,0) x^{n} + C(n,1) x^{n-1} y + \dots + C(n,n-1) x^{n} y^{n-1} + C(n,n) y^{n}$

Example1

1. Find the expansion of (1) $(x+y)^4$ and (2) $(x+y)^6$.

2. How many terms are there in the expansion of $(x+y)^{100}$ after like terms are collected.

3. What is the coefficient of $x^{101}v^{99}$ in $(2x - 3v)^{200}$?

Corollary

Let $n \ge 0$ be integers. Then we have the following identities:

$$\sum_{j=0}^{n} C(n,j) = 2^{n},$$

$$\sum_{j=0}^{n} (-1)^{j} C(n,j) = 0,$$

$$\sum_{k=0}^{n} 2^{k} C(n,k) = 3^{n}.$$

• Those identities can be proved easily, using the binomial theorem.

• Pascal's Identity and Triangle

Theorem

Pascal's Identity Let n > 0 and k > 0 be integers with $n \ge k$. Then

$$C(n+1, k) = C(n, k-1) + C(n, k).$$

- Pascal's identity can be used to recursively define binomial coefficients. The identity is the basis for a geometric arrangement of binomial coefficient in a triangle (called Pascal's triangle).
- Pascal's identity shows how to arrange a Pascal's triangle.

Example2

What is the row of Pascal's triangle containing the binomial coefficients C(4, k), $0 \le k \le 4$?