9.3 Representing Relations

Department of Mathematics & Statistics

ASU

jahn@astate.edu

- In this section and next section 9.5, we will study only binary relations among all relations.
- We will discuss two alternative methods for representing relations
- I Zero-one matrices are appropriate in computer programs.
- Pictorial representations called directed graphs are useful for people to get a understanding on the properties of the relations.

Representing Relations Using Matrices

Suppose that *R* is a binary relation from $A = \{a_1, a_2, a_3, \dots, a_m\}$ to $B = \{b_1, b_2, b_3, \dots, b_n\}$, i.e., a subset of $A \times B$. Then the relation *R* can be represented by the matrix $M_R = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R, \\ 0 & \text{if } (a_i, b_j) \notin R. \end{cases}$$

Example1

Represent each of these relations on $\{1,2,3\}$ with a matrix.

1.
$$\{(1,1),(1,2),(1,3)\}$$

2. $\{(1,2),(2,1),(2,3),(3,3)\}$
3. $\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$
4. $\{(1,3),(3,1)\}$

Example2

List the ordered pairs in the relations on $\{1,2,3\}$ for these matrices

1.

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 2.
 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

- Recall the following properties of relation R on a set A.
- **Q** Reflexive: $(a, a) \in R$ for $a \in A$.
- **2** Symmetric: $(a, b) \in R \Rightarrow (b, a) \in R$.
- **3** Antisymmetric: $(a, b) \in R$ and $(b, a) \in R \Rightarrow a = b$.
 - The square matrix (*n* × *n*) of a relation on a set can be used to determine whether the relation has certain properties.
- **O Reflexive:** $m_{ii} = 1$ for $i = 1, 2, \dots, n$.
- **2** Symmetric: $m_{ij} = m_{ji}$ for $1 \le i \le n$ and $1 \le j \le n$.
- Antisymmetric: $m_{ij} = 1$ with $i \neq j \Rightarrow m_{ij} = 0$. In other words, when $i \neq j$, either $m_{ij} = 0$ or $m_{ji} = 0$.

Example3

Determine whether the relations represented by the matrices in the example 2 are reflexive, symmetric, antisymmetric, transitive.

Example4

How many nozero entries does the matrix correspondeing relation R on $A = \{1, 2, 3, \dots, 100\}$ consisting of the first 100 positive integers have if R is 1. $\{(a, b) \mid a > b\}$? 2. $\{(a, b) \mid a = b+1\}$? 3. $\{(a, b) \mid ab = 1\}$?

 Suppose that R₁ and R₂ are relations on a set A represented by M_{R1} and M_{R2}, respectively. Then

$$\mathsf{M}_{R_1\cup R_2}=\mathsf{M}_{R_1}\vee\mathsf{M}_{R_2},\quad \mathsf{M}_{R_1\cap R_2}=\mathsf{M}_{R_1}\wedge\mathsf{M}_{R_2}.$$

• From the Boolean product, we can define

$$\mathsf{M}_{R_1\circ R_2} = \mathsf{M}_{R_2} \odot \mathsf{M}_{R_1}, \quad \mathsf{M}_{R^n} = \mathsf{M}_R^n.$$

Example5

Let R be the relation represented by the matrix

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Find the matrix representing (1) R^{-1} (2) \overline{R} (3) R^{2}

Example6

Let R be the relation represented by the matrix

$$\mathbf{M}_{R} = \left[\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right]$$

Find the matrix representing (1) R^2 (2) R^3

.

Representing Relations Using Digraphs
 Each element of a set is represented by a point, and each
 ordered pair is represented using an arc with its direction
 indicated by an arrow.

Definition

A directed graph or digraph consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

• An edge of the form (*a*,*a*) is represented using an arc from the vertex *a* back to itself. Such an edge is called a loop.

Example7

List the ordered pairs in the relations represented by the directed graphs. (see Exercises #23, #25, #27 in pp. 597)