9. Equivalence Relations

Department of Mathematics & Statistics

ASU

jahn@astate.edu

• Equivalence relations arise whenever we care only whether an element of a set is in certain class of elements. The "congruence modulo *m*" relation is an example of equivalence relations.

Definition

A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

• A reason that an equivalence relation is important throughout mathematics and computer science is that it makes sense when two elements of the relation are related.

Definition

Two elements $a, b \in A$ that related by an equivalence relation are called equivalent and denoted by $a \sim b$.

Example1

Let *R* be the relation on the set of rational numbers such that *aRb* if and only if *a*−*b* is an integer. Determine if *R* is an E. R..
Show that the relation is an equivalence relation on Z

 $R = \{(a, b) | a \equiv b \pmod{5}\}.$

Example2

1. Which of these relations on $A = \{0, 1, 2, 3\}$ are equivalence relations? Determine the properties of an E. R. that others lack. (1) $\{(0,0), (1,1), (2,2), (3,3)\}$ (2) $\{(0,0), (1,1), (1,2), (2,1), (2,2), (3,3)\}$ (3) $\{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,2), (3,3)\}$ 2. Which of these relations on the set of all functions $f : \mathbb{Z} \to \mathbb{Z}$ are equivalence relations? Do the same thing. (1) $\{(f,g) | f(1) = g(1)\}$. (2) $\{(f,g) | \text{ for some } C \in \mathbb{Z}, \text{ for all } x \in \mathbb{Z}, f(x) - g(x) = C\}$.

• Equivalence Classes

Definition

The equivalence class of A with respect to R is denoted by $[a]_R$:

$$[a]_R = \{s | (a, s) \in R\}.$$

Note that if a relation is obvious, then we write [a] for the equivalence class.

Example3

1. What are the equivalence classes of 1 and 4 for congruence modulo 5?

2. Do the exercise problem #21, #23 on pp.616

• Equivalence Classes and Partitions

Theorem

Let R be an equivalence on a set A. Then for $a, b \in A$ we have

 $(1) aRb \Leftrightarrow (2) [a] = [b] \Leftrightarrow (3) [a] \cap [b] \neq \emptyset.$

• A partition on a set A is a collection of subsets of A such that 1. $A_i \neq \emptyset$ for $i \in I$ 2. $A_i \cap A_j = \emptyset$ when $i \neq j$. 3. $\bigcup_{i \in I} A_i = A$.

Theorem

Let R be an equivalence relation on a set A. Then the equivalence relation classes of R form a partition $\{A_i \mid i \in I\} \Leftrightarrow$ for a given partition $\{A_i \mid i \in I\}$, there is an equivalence relation R that has the set A_i with $i \in I$ as its E.C..

Example4

Which of these collections of subsets are parts. of $\{1,2,3,4,5,6\}$? (1) $\{1,2\},\{2,3,4\},\{4,5,6\}$ (2) $\{2,4,6\},\{1,3,5\}$