1 Taylor Polynomials

Dr. Jeongho Ahn

Department of Mathematics \& Statistics
ASU

Outline of Chapter 1

(1) The Taylor Polynomial
(2) The Error in Taylor's Polynomials
(3) Polynomial Evaluation

1.1 The Taylor Polynomial

- The basic operations of calculators or computers are ,,$+- \times, \div$. If we limit ourselves to just those operators, the functions $f(x)$ that we evaluate will be limited to the polynomials $\left(a_{n} \neq 0\right)$:

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where n is its degree and $a_{0}, a_{1}, \cdots, a_{n}$ are the coefficients.

- Roughly speaking, all elementary (smooth) functions can be approximated by the Taylor polynomials.
- Recall the Taylor series of the function f centered at $x=a$:

$$
f(x)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}
$$

Then the n th-degree Taylor polynomials of f at $x=$ a denoted by $p_{n}(x)$ are defined as

$$
\begin{aligned}
p_{n}(x) & =\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

We know that $p_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$.

Example1

Let $f(x)=e^{x}$ and $a=0$.

1. Find a linear polynomial $p_{1}(x)$ and quadratic polynomial $p_{2}(x)$.
2. Find the Taylor polynomial $p_{n}(x)$.

Example2

1. Let $f(x)=\sin x$ and $a=0$. Find the Taylor polynomial $p_{n}(x)$.
2. Let $f(x)=\cos x$ and $a=0$. Find the Taylor polynomial $p_{n}(x)$.
3. Let $f(x)=\ln x$ and $a=1$. Find the Taylor polynomial $p_{n}(x)$.

- Notations (\approx and \doteq) mean "approximately equals".
(1) the symbol \approx is used to evaluate functions approximately:

$$
2 x \approx 5 \text { or } e^{x} \approx x+1
$$

(2) the symbol \doteq is generally used with numbers:

$$
\pi \doteq 3.141592 \text { or } \sqrt{192} \doteq 13.8564
$$

