1.2 The Error in Taylor's Polynomial

January 27, 2016

When we use the Taylor polynomial to approximate certain functions, we need to consider its accuracy.

Theorem

(Taylor's remainder) Assume that f is a smooth function on an interval $[\alpha, \beta]$ and $a \in[\alpha, \beta]$. Then

$$
f(x)-p_{n}(x)=\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}\left(c_{x}\right) \quad \text { for } x \in[\alpha, \beta]
$$

where $c_{x} \in(a, x)$ or $c_{x} \in(x, a)$. So if $\left|f^{(n+1)}(x)\right| \leq M$ for $x \in[\alpha, \beta]$, the error estimate for the Taylor polynomials is

$$
\left|f(x)-p_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

Example1

Let $f(x)=e^{x}$ and $a=0$. Then we have the error estimate at $x=1$:

$$
\left|e-p_{n}(1)\right| \leq \frac{e}{(n+1)!}
$$

Moreover for each fixed $x \in(-\infty, \infty) \lim _{n \rightarrow \infty} p_{n}(x)=e^{x}$, since we can use the Taylor Remainder theorem and

$$
\lim _{n \rightarrow \infty} M \frac{x^{n+1}}{(n+1)!}=0 \quad \text { for each fixed } x \in(-\infty, \infty)
$$

Example2

Use the Taylor remainder theorem to determine how large the number of terms in the Taylor ploynomal has to be chosen to have

$$
\left|e-p_{n}(1)\right| \leq 10^{-8}
$$

- For future reference, we have some important Taylor polynomials with the remainder.

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\frac{x^{n+1}}{(n+1)!} e^{c_{x}},
$$

$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \sin c_{x}$,
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+(-1)^{n+1} \frac{x^{2 n+2}}{(2 n+2)!} \cos c_{x}$,
where c_{x} is in between 0 and x.

- Notations
(1) $\left|f(x)-p_{n}(x)\right| \leq M_{1}$ means that the error caused by the polynomial p_{n} over the whole domain is bounded by M_{1}.
(2) $\max _{\alpha \leq x \leq \beta}\left|f(x)-p_{n}(x)\right|=M_{2}$ means that the error caused by the polynomial p_{n} over the interval $[\alpha, \beta]$ is bounded by M_{2}. So $\left|f(x)-p_{n}(x)\right| \leq M_{1}$ is equivalent to $\max _{-\infty<x<\infty}\left|f(x)-p_{n}(x)\right|=M_{1}$

