
1.3 Polynomial Evaluation

Consider polynomials

p(x) = a0 +a1x +a2x2 + · · ·+ · · ·anxn

which you need to evaluate for many values of x .
How do we evaluate the polynomials efficiently?
We use Nested Multiplication (or Horner’s method) to
save the computational time, since fewer operations are
required if polynomials are rewritten as N.M(H.M). In order to
do so, we group the terms in nested multiplication:

p(x) = a0 + x
(
a1 +a2x + · · ·an−1xn−2 +anxn−1)

=
...

= a0 + x (a1 + x (a2 + · · ·+ x (an−1 + x (an)) · · ·)) .



In order to write Scilab code, the polynomial is rewritten in the
nested multiplication:

p(x) = a1 + x (a2 + x (a3 + · · ·+ x (an + x (an+1)) · · ·)) .

Based on the nested multiplication, we can have the following
pseudo-code:

real array (ai )1:n; integer i , n; real y , x
...

y ← an+1
for i = n :−1 : 1

y ← ai + y ∗ x
end for

The main idea is to start with the inner parentheses and works
outward.



Here is a scilab code for Nested Multiplication:

//Evaluate a poly. P(x) = a1 +a2x + · · ·+an+1xn at a value x .
//Input: degree n and an array of n+1 coefficients c and a value x .
//Output: value y = P(x).

function y=nest_multi(n,c,x)
y = c(n+1);
for i=n:-1:1

y = c(i)+y.*x;
end

endfunction



Example1
Rewrite the following polynomial in nested form.
1. p(x) = 3x5 + x4−2x3−5x +1
2. p(x) = 7x8−5x6 +3x3 +2x2−4

Note that we can extend to more general nested form:

a0 +(x− r0)(a1 +(x− r1)(a2 + · · ·+(x− rn−1)(an)) · · ·) ,

where r0, r1, r3, · · · , rn−1 are called the base points.

Example2

Find the Taylor polynomial p5(x) for lnx about a = 1. Then rewrite
it in nested form.


