2 Error and Computer Arithmetic

Dr. Jeongho Ahn

Department of Mathematics & Statistics

ASU

Dr. Jeongho Ahn Jeongho.ahn@mathstat.astate.edu

- Icont States States
- **2** Errors: Definitions, Sources, and Examples
- Propagation of Error
- Summation

2.2 Errors: Definitions, Sources, and Examples

Some Definitions: let x_T denote the true value (exact solution) and x_A denote an approximation of x_T. Then

3 the error in
$$x_A$$
 is error $(x_A) = x_T - x_A$.

2 the relative error in x_A is

$$\operatorname{rel}(x_{\mathcal{A}}) = \frac{\operatorname{error}(x_{\mathcal{A}})}{x_{\mathcal{T}}} = \frac{x_{\mathcal{T}} - x_{\mathcal{A}}}{x_{\mathcal{T}}} \quad \text{for } x_{\mathcal{T}} \neq 0.$$

- We will mostly consider the absolute error in x_A: |error (x_A)| and the absolute relative error in x_A: |rel (x_A)|.
 - For practical reasons, the relative error is more meaningful than the error. We will see it in the next Example1.

Example1

1. If the exact solution $x_T = 2.000$ is and the approximation $x_A = 2.001$, find the absolute error and relative error of x_A . 1. If the exact solution $x_T = 0.001$ is and the approximation $x_A = 0.002$, find the absolute error and relative error of x_A .

- Sources of Error
- Modelling Errors
- 2 Blunders and Mistakes
- **3** Pysical Measurement Errors
- Machine Errors
- Mathematical Errors

Significant digits:

An approximation x_A has m significant digits w.r.t the true value x_T if $|x_T - x_A|$ is less than or equal to 5 units in the $(m+1)^{st}$ digit, beginning with the first nonzero digit in x_T .

Example2

1. Let $x_T = 13.27$ and $x_A = 13.24$. Then x_A has 3 significant digits w.r.t. x_T . 2. Let $x_T = e$ and $x_A = 2.71826$. Then x_A has 5 significant digits w.r.t. x_T , since $|x_T - x_A| \doteq 0.00002182$.

- A loss of significance occurs when we subtract one quantity from the other nearly equal quantity.
- To better understand, we consider the following examples.

Example1

Consider the function

$$f(x) = \sqrt{x^2 + 9} - 3.$$

For $x \approx 0$ we can expect a potential loss of significance in the subtraction. How do we avoid the loss of significance? Let's calculate f(0.1) on a 3 decimal-digit computer. 1. Without rationalizing f, you will get 0.00, since $\sqrt{9.01} \approx 3.0016$. 2. However, if we rationalize, $f(0.1) = 0.00167 = 1.67 \times 10^{-3}$.

• Here is another example with trigonometric expressions

Example3

Consider the following function

$$g_1(x) = rac{1 - \cos x}{\sin^2 x}$$
 for $x pprox 0$

In order to avoid loss of significance, we change it into another expression

$$g_2(x) = \frac{1}{1 + \cos x}.$$

• When we use the quadratic formula:

1

If $4ac \ll b^2$, then one of the roots can be subject to loss of significance.

For the quadratic equation $ax^2 + bx + c = 0 (a \neq 0)$, the quadratic formula is

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

If
$$b > 0$$
 and $4|ac| \ll b^2$,
 $x_1 = -\frac{b + \sqrt{b^2 - 4ac}}{2a}$ and $x_2 = -\frac{2c}{b + \sqrt{b^2 - 4ac}}$
If $b < 0$ and $4|ac| \ll b^2$,
 $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $x_2 = \frac{2c}{-b + \sqrt{b^2 - 4ac}}$
The Jeorgho Ahn Dengho ahn Qmathstat astate.edu