3.2 Newton's Method

- This method (called the Newton-Raphson Method) converges much faster than the bisection method does.
- In Newton's method, we assume that $f \in C^{1}$ and $f^{\prime}\left(x_{n}\right) \neq 0$ for any $n \geq 0$.
- Newton's method will be obtained, based on the linear approximation:

$$
\begin{aligned}
& x_{0}=\text { initial guess } \\
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \text { for } n=0,1,2,3, \cdots
\end{aligned}
$$

Example1

1. Find the Newton's formula for the equation

$$
x^{3}=0 .
$$

2. Given $x_{0}=1$, find x_{1} and x_{2} in the Newton iteration.
// This code modifies the Newton-Raphson method.
// $x 0$ is an initial point and tol_n is used in stopping the iteration.
function [sol,iter_count,error_bd]=
newton($\times 0$, tol_n,given_fx,deriv_given_fx)
error_bd=1; iter_count=0;
while abs (error_bd)>tol_n
$f x=$ given_fx(x0); //given_fx is given by your test
function

> d_fx=deriv_given_fx(x0);
// deriv_given _fx is a derivative of test function if abs $\left(d_{-} f x\right)==0 / /$ in order to avoid $f^{\prime}=0$ disp ('Use the bisection method!'); return
end // for if statement
$x 1=x 0-f x / d_{-} f x / /$ Find the next step solution
error_bd $=x 1-x 0 ; \times 0=x 1$;
iter_count $=$ iter_count +1 ; // Count \# of iteration.
end // for while loop
sol $=x 1 ;$ endfunction

endfunction

// function value1 $=$ test_fun1(x)
value1 $=\mathrm{x} .{ }^{\wedge} 3-5$;
endfunction
///
function value2 $=$ test_fun1_deri((x)
value2 $=3^{*} x .{ }^{\wedge} 2$;
endfunction
//

- Convergence Analysis

Definition

Sequence x_{n} is said to be quadratically convergent to a limit x if there is $C>0$ such that

$$
\left|x_{n+1}-x\right| \leq C\left|x_{n}-x\right|^{2} \quad \text { for } n \geq 0
$$

Alternatively, the iteration is quadratically convergent if

$$
M=\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x\right|}{\left|x_{n}-x\right|^{2}}<\infty
$$

Theorem

Suppose that $f \in C^{2}, f\left(x^{*}\right)=0$, and $f^{\prime}\left(x_{n}\right) \neq 0$ for all $n \geq 0$. Then Newton's method is locally and quadratically convergent to x^{*} :

$$
\left|x_{n+1}-x^{*}\right| \leq C\left|x_{n}-x^{*}\right|^{2} \quad \text { for } n \geq 0
$$

where $C=\left|f^{\prime \prime}\left(c_{n}\right) /\left(2 f^{\prime}\left(x_{n}\right)\right)\right|$ and c_{n} is in between x^{*} and x_{n}.

- However, the previous Theorem does not say that Newton's method always converges quadratically.
- We can see it in the next example

Example2

Prove that Newton's method to find root of $f(x)=\left(x-x^{*}\right)^{m}$ converges linearly, where m is any positive integer.

- The function f is said to have a multiplicity m root of x^{*} if there is a smallest m such that $f^{(k)}\left(x^{*}\right)=0$ for $0 \leq k<m$, but $f^{(m)}\left(x^{*}\right) \neq 0$.
- You will see that Newton's method fails in the next examples.

Example3

1. Use Newton's method to find a solution of $-x^{4}+3 x^{2}+2=0$. Start Newton's method with initial guess $x_{0}=1$
2. Use Newton's method to find a solution of $-x^{3}+2=0$. Start Newton's method with initial guess $x_{0}=-1$
