• Consider the nonlinear equation

$$x-\cos x=0.$$

Then you may use the bisection method or Newton's method(secant method) to find a (approximate) solution of the equation.

However, the fixed point equation cos x = x which is equivalent to x - cos x = 0 can be considered from a different point of view. From the fixed equation the input x is equal to the output that will be a fixed point of cos x. Also the input x is a solution of the equation x - cos x = 0.

Definition

The number x^* is a fixed point of the function g if $g(x^*) = x^*$.

FPI starts with initial guess x₀ and iterates a function g: x₀ = initial input x_{i+1} = g(x_i) for i = 1,2,3,...
If g ∈ C and lim_{i→∞} x_i = x*, then g(x*) = x*.

Example

1. The function $g(x) = \cos x$ has a fixed (approx) point $x^* = 0.73$. To see it, use the following code: function x=x final(x 0,k,given fc) // Output will be an array. x(1) = x 0;for i=1:kx(i+1)=given fc(x(i)); end endfunction function value = test func1(x)value = cos(x); endfunction 2. Explain why the FPI for $g(x) = \cos x$ converges.

Corollary

Suppose that $g \in C[a, b]$ satisfies the following properties

$$a \le x \le b \Rightarrow a \le g(x) \le b.$$

Then the equation x = g(x) has at least one solution $x^* \in [a, b]$.

Theorem

(Contraction Mapping Theorem) Assume that $g \in C^1[a, b]$ and $a \leq g(x) \leq b$ for $a \leq x \leq b$. If $\lambda = \max_{a \leq x \leq b} |g'(x)| < 1$, then 1. $\exists !$ solution $x^* \in [a, b]$ of the equation x = g(x). 2. For any initial guess $x_0 \in [a, b]$, $\{x_n\}$ converges to x^* . 3.

$$|x^*-x_n|\leq rac{\lambda^n}{1-\lambda}|x_1-x_0|$$
 for $n\geq 0$.

4.

$$\lim_{n \to \infty} \frac{|x^* - x_{n+1}|}{|x^* - x_n|} = |g'(x^*)| < 1$$

Definition

It is said that a sequence $\{x_n\}$ converge to x^* with order of convergence $p \ge 1$ if

$$|x^*-x_{n+1}| \leq C |x^*-x_n|^p$$
.

- If |g'(x*)| < 1, the sequence {x_n} converge linearly. Note that the value of |g'(x*)| is called the linear rate of convergence.
- If |g'(x*)| = 1, there is no conclusion:even if {x_n} converges, the speed of convergence is very slow.
- Newton's method is a good example of FPI, since the Newton iterative formula is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

and it can change into x = g(x) with g(x) = x - f(x)/f'(x).