3.4 FPI (Fixed Point Iteration)

- Consider the nonlinear equation

$$
x-\cos x=0
$$

Then you may use the bisection method or Newton's method(secant method) to find a (approximate) solution of the equation.

- However, the fixed point equation $\cos x=x$ which is equivalent to $x-\cos x=0$ can be considered from a different point of view. From the fixed equation the input x is equal to the output that will be a fixed point of $\cos x$. Also the input x is a solution of the equation $x-\cos x=0$.

Definition

The number x^{*} is a fixed point of the function g if $g\left(x^{*}\right)=x^{*}$.

- FPI starts with initial guess x_{0} and iterates a function g :

$$
x_{0}=\text { initial input }
$$

$$
x_{i+1}=g\left(x_{i}\right) \text { for } i=1,2,3, \cdots
$$

- If $g \in C$ and $\lim _{i \rightarrow \infty} x_{i}=x^{*}$, then $g\left(x^{*}\right)=x^{*}$.

Example

1. The function $g(x)=\cos x$ has a fixed (approx) point $x^{*}=0.73$..

To see it, use the following code:
function $x=x$ _final($x _0, k$, given_fc) // Output will be an array.
$x(1)=x _0$; for $i=1: k$
$x(i+1)=$ given $_f c(x(i))$;
end
endfunction
//
function value $=$ test_func1 (x)
value $=\cos (x)$;
endfunction
2. Explain why the FPI for $g(x)=\cos x$ converges.

Corollary

Suppose that $g \in C[a, b]$ satisfies the following properties

$$
a \leq x \leq b \Rightarrow a \leq g(x) \leq b .
$$

Then the equation $x=g(x)$ has at least one solution $x^{*} \in[a, b]$.

Theorem

(Contraction Mapping Theorem) Assume that $g \in C^{1}[a, b]$ and $a \leq g(x) \leq b$ for $a \leq x \leq b$. If $\lambda=\max _{a \leq x \leq b}\left|g^{\prime}(x)\right|<1$, then

1. \exists ! solution $x^{*} \in[a, b]$ of the equation $x=g(x)$.
2. For any initial guess $x_{0} \in[a, b],\left\{x_{n}\right\}$ converges to x^{*}.
3.

$$
\left|x^{*}-x_{n}\right| \leq \frac{\lambda^{n}}{1-\lambda}\left|x_{1}-x_{0}\right| \quad \text { for } n \geq 0
$$

4.

$$
\lim _{n \rightarrow \infty} \frac{\left|x^{*}-x_{n+1}\right|}{\left|x^{*}-x_{n}\right|}=\left|g^{\prime}\left(x^{*}\right)\right|<1
$$

Definition

It is said that a sequence $\left\{x_{n}\right\}$ converge to x^{*} with order of convergence $p \geq 1$ if

$$
\left|x^{*}-x_{n+1}\right| \leq C\left|x^{*}-x_{n}\right|^{p}
$$

- If $\left|g^{\prime}\left(x^{*}\right)\right|<1$, the sequence $\left\{x_{n}\right\}$ converge linearly. Note that the value of $\left|g^{\prime}\left(x^{*}\right)\right|$ is called the linear rate of convergence.
- If $\left|g^{\prime}\left(x^{*}\right)\right|=1$, there is no conclusion:even if $\left\{x_{n}\right\}$ converges, the speed of convergence is very slow.
- Newton's method is a good example of FPI, since the Newton iterative formula is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

and it can change into $x=g(x)$ with $g(x)=x-f(x) / f^{\prime}(x)$.

