4.2 Error in Polynomial Interpolation

- The interpolating error at each value x is

$$
\left|f(x)-p_{n}(x)\right|
$$

where f is the original function and p_{n} is an interpolating polynomial with $\operatorname{deg}\left(p_{n}\right)=n$.

Theorem

Assume that $p(x)$ is the interpolating polynomial of degree at most n fitting the n distinct points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ and $f \in C^{n+1}[a, b]$. Then the interpolation error is

$$
\left|f(x)-p_{n}(x)\right|=\left|\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)}{(n+1)!}\right|\left|f^{(n+1)}\left(c_{x}\right)\right|,
$$

where c_{x} belongs to the open interval $\left(\min \left\{x, x_{0}, x_{1}, \cdots, x_{n}\right\}, \max \left\{x, x_{0}, x_{1}, \cdots, x_{n}\right\}\right)$.

Example1:

1. Consider the linear interpolation to $f(x)=e^{x}$ using two nodes x_{0} and x_{1} satisfying $0 \leq x_{0}<x_{1} \leq 1$. Then find the actual error bound of f on the interval $\left[x_{1}, x_{2}\right]$.
2. If the polynomial $p(x)$ interpolates $f(x)=e^{x}$ at the points $(-2,-1,0,1,2)$, find the maximum interpolating error at $x=1 / 2$ and $x=3 / 4$ for $f(x)$.
3. If the polynomial $p(x)$ interpolates $f(x)=1 /(x+1)$ at the points $(0,1,2,3,4)$, find the maximum interpolating error at $x=1 / 2$ and $x=7 / 2$ for $f(x)$.

- Runge Phenomenon

(1) Its specific example is provided by the Runge function:

$$
f(x)=\frac{1}{1+x^{2}}
$$

(2) The interpolating polynomials for the function $f(x)$ wiggle near the ends of the interpolating interval.
(3) The Chebyshev interpolation improves the situation:

