4.3 Interpolation using spline functions

- Polynomial Interpolations vs Splines
(1) In the polynomial interpolation, the only one polynomial meets all data points.
(2) The idea of splines is to use piecewise low degree polynomials to go through all data points.
- The simplest example of a spline is a linear spline which is equivalent to a piecewise linear interpolation.
- Linear splines can be replaced by cubic splines in order to make them smooth curves.
- Note that quadratic splines are rarely used for interpolation. So we mostly consider the cubic splines.
- Properties of Cubic Splines
(1) A cubic spline $S(x)$ through the data points $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ is a set of cubic polynomials

$$
\begin{array}{rlr}
S_{1}(x)= & y_{1}+b_{1}\left(x-x_{1}\right)+c_{1}\left(x-x_{1}\right)^{2}+d_{1}\left(x-x_{1}\right)^{3} & \text { on }\left[x_{1}, x_{2}\right] \\
S_{2}(x) & =y_{2}+b_{2}\left(x-x_{2}\right)+c_{2}\left(x-x_{2}\right)^{2}+d_{2}\left(x-x_{2}\right)^{3} & \text { on }\left[x_{2}, x_{3}\right] \\
& \ldots & \\
S_{n-1}(x) & =y_{n-1}+b_{n-1}\left(x-x_{n-1}\right)+c_{n-1}\left(x-x_{n-1}\right)^{2} & \\
& +d_{n-1}\left(x-x_{n-1}\right)^{3} \quad \text { on }\left[x_{n-1}, x_{n}\right] . &
\end{array}
$$

(2) A cubic spline has three main properties:
(1) $S_{i}\left(x_{i}\right)=y_{i}$ and $S_{i}\left(x_{i+1}\right)=y_{i+1}$ for $i=1, \cdots, n-1$.
(2) $S_{i-1}^{\prime}\left(x_{i}\right)=S_{i}^{\prime}\left(x_{i}\right)$ for $i=2, \cdots, n-1$.
(3) $S_{i-1}^{\prime \prime}\left(x_{i}\right)=S_{i}^{\prime \prime}\left(x_{i}\right)$ for $i=2, \cdots, n-1$.

- From three properties, we can set up $3 n-5$ linear equations. However, we need two more equations to solve for $3 n-3$ coefficients. In order to do so, we impose two conditions on two endpoints: (4) $S_{1}^{\prime \prime}\left(x_{1}\right)=0$ and $S_{n-1}^{\prime \prime}\left(x_{n}\right)=0$.
- A spline that satisfies the properties (1) - (4) is called a natural cubic spline. The two conditions in (4) are called endpoint conditions for a natural conditions. Note that there are many different versions of (4).

Example1

Define the following three cubic splines:

$$
\begin{aligned}
& S_{1}(x)=2-\frac{13}{8}(x-1)+\frac{5}{8}(x-1)^{3} \quad \text { on }[1,2] \\
& S_{2}(x)=1+\frac{1}{4}(x-2)+\frac{15}{8}(x-2)^{2}-\frac{5}{8}(x-2)^{3} \quad \text { on }[2,4] \\
& S_{3}(x)=4+\frac{1}{4}(x-4)-\frac{15}{8}(x-4)^{2}+\frac{5}{8}(x-4)^{3} \quad \text { on }[4,5]
\end{aligned}
$$

Check that $\left\{S_{1}, S_{2}, S_{3}\right\}$ satisfies three properties for the data points $(1,2),(2,1),(4,4)$, and $(5,3)$.

Example2

1. Determine a, b, c, d, e, f, g, h so that $S(x)$ is the natural cubic spline

$$
S(x)=\left\{\begin{array}{cc}
a x^{3}+b x^{2}+c x+d & \text { on }[-1,0] \\
e x^{3}+f x^{2}+g x+h & \text { on }[0,1]
\end{array}\right.
$$

with the interpolation conditions (1) $S(-1)=1,(2) S(0)=2$ and (3) $S(1)=-1$.
2. Find the natural cubic spline through $(0,3),(1,-2)$, and $(2,1)$.

- Note that you may use the formulas (4.63-4.65) in page 150 to find $S(x)$. It is not recommendable!

Theorem

If S is the natural cubic spline that interpolates the function $f \in C^{2}[a, b]$ with $a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b$, then

$$
\int_{a}^{b}\left[S^{\prime \prime}(x)\right]^{2} d x \leq \int_{a}^{b}\left[f^{\prime \prime}(x)\right]^{2} d x
$$

Example3

Consider the data

x	0	1	2
y	1	0	3

1. Find the piecewise linear interpolating function for the data.
2. Find the quadratic interpolating polynomial for the data.
3. Find the natural cubic spline that interpolates the data.
