4.6 A Near-Minimax Approximation Method

- Remember that a uniform spaced set of interpolation nodes on the some interval provides a very poor approximation to the Runge function $f(x)=1 /\left(x^{2}+1\right)$. In order to improve the situation, we will use the minimax error which is discussed in Section 4.4.
- We consider four nodes $x_{0}, x_{1}, x_{2}, x_{3}$ in $[-1,1]$ and a polynomial $c_{3}(x)$ (near minimax approximation) with $\operatorname{deg}\left(c_{3}\right) \leq 3$ which interpolates $f(x)$. Recall the interpolation error

$$
\left|f(x)-c_{3}(x)\right|=\left|\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{4!}\right|\left|f^{(4)}\left(c_{x}\right)\right|
$$

Then letting $w(x)=\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)$, we want to choose the nodes $x_{0}, x_{1}, x_{2}, x_{3}$ so that

$$
\max _{-1 \leq x \leq 1}|w(x)|
$$

is obtained as small as possible.

- Recall the minimum size property. Then the smallest value of $\max _{-1 \leq x \leq 1}|w(x)|$ is $1 / 2^{3}$, since

$$
w(x)=\frac{1}{8} T_{4}(x)=\frac{1}{8}\left(8 x^{4}-8 x^{2}+1\right) .
$$

By the Chebyshev polynomials

$$
T_{4}(x)=\cos (4 \theta) \quad x=\cos \theta
$$

We can find the zeros $4 \theta= \pm \pi / 2, \pm 3 \pi / 2, \pm 5 \pi / 2, \pm 7 \pi / 2, \cdots$, which provides the four approximate nodes

$$
x= \pm 0.38283, \quad x= \pm 0.923880
$$

Note that the cos function is even.

Example

Consider the function $f(x)=e^{x}$ and the interpolating polynomial $c_{3}(x)$ with the four nodes (by the Chebyshev polynomials) on the interval $[-1,1]$.
Then we can find

$$
\max _{-1 \leq x \leq 1}\left|e^{x}-c_{3}(x)\right|=0.00666
$$

and

$$
\rho_{n}\left(e^{x}\right)=m_{3}(x)=0.00553
$$

- By the Chebyshev polynomials, the interpolation nodes of the near minimax approximation $c_{n}(x)$ are obtained by

$$
x_{j}=\cos \left(\frac{2 j+1}{2 n+2} \pi\right), \quad \text { for } j=0,1,2, \cdots n
$$

where these $n+1$ nodes are on $[-1,1]$.

