4.7 Least Squares Approximation

- In the previous section, we considered a near minimax polynomial approximation based on suitable chosen nodes. Another approach is to find an approximation $p(x)$ with a small average error over the interval $[a, b]$. A convenient definition of the average error of the approximation is given by

$$
\begin{equation*}
E(p ; f) \equiv \sqrt{\frac{1}{b-a} \int_{a}^{b}[f(x)-p(x)]^{2} d x} \tag{1}
\end{equation*}
$$

which is called the root-mean-square-error(RMSE) in the approximation of $f(x)$ by $p(x)$.

- Choosing $p(x)$ to minimize $E(p ; f)$ is equivalent to minimizing

$$
\int_{a}^{b}[f(x)-p(x)]^{2} d x
$$

The minimizing of (1) is called the least squares approximation problem.

Example1

Let $f(x)=e^{x}$.

1. Find the polynomial $p(x)$ such that

$$
\min _{\operatorname{deg}(p) \leq 1} \int_{-1}^{1}\left[e^{x}-p(x)\right]^{2} d x
$$

2. Find the uniform error of approximation of $f(x)$ by $p(x)$. See the table in the next page.

- The general case for the previous example1 We approximate $f(x)$ on the interval $[a, b]$ and let $n \geq 0$. Seek a polynomial $p_{n}(x)$ with $\operatorname{deg}\left(p_{n}\right)=n$ such that

$$
\min _{\operatorname{deg}\left(p_{n}\right) \leq n} g\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=\min _{\operatorname{deg}\left(p_{n}\right) \leq n} \int_{0}^{1}\left[f(x)-p_{n}(x)\right]^{2} d x
$$

Errors in Linear Approximations of e^{x}

Approximation	Maximum Error	RMSE
Taylor poly.	0.718	0.246
Least square poly.	0.439	0.162
Chebyshev poly.	0.372	0.184
Minimax poly.	0.279	0.190

- To minimize $g\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$, we invoke the conditions

$$
\frac{\partial g}{\partial \alpha_{i}}=0 \quad \text { for } i=0,1,2, \cdots, n
$$

By the several algebraic manipulations we can set up the linear system

$$
\sum_{j=0}^{n} \frac{\alpha_{j}}{i+j+1}=\int_{0}^{1} x^{i} f(x) d x, \quad \text { for } i=0,1, \cdots, n
$$

Thus, we can solve the linear system.

- However, we will see that this linear system is ill-conditioned and thus is difficult to solve accurately, even for moderately sized values of $n=5$. As a consequence, this is not a good approach to solving for a minimizer of $g\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$.
- Legendre Polynomials
(1) A class of Legendre polynomials is another better approach to minimizing $E(p ; f)$.
(2) Legendre polynomials $P_{n}(x)$ are defined as follows: for
$-1 \leq x \leq 1$

$$
P_{0}(x)=1,
$$

$$
P_{n}(x)=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right], \quad \text { for } n=1,2,3, \cdots
$$

Example2

We can find the following Legendre polynomials

$$
\begin{aligned}
& P_{0}(x)=1 \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \quad P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) .
\end{aligned}
$$

- For the functions $f(x)$ and $g(x)$ we introduce the following

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

- Here are some properties of Legendre polynomials.
(1) $\operatorname{deg}\left(P_{n}\right)=n$ and $P_{n}(1)=1$
(2) The triple recursion relation:

$$
P_{n+1}(x)=\frac{2 n+1}{n+1} x P_{n}(x)-\frac{n}{n+1} P_{n-1}(x), \quad \text { for } n \geq 1
$$

(3) Orthogonality and size:

$$
\left(P_{i}, P_{j}\right)= \begin{cases}0, & \text { if } i \neq j \\ \frac{2}{2 j+1} \text { if } i=j\end{cases}
$$

(9) All simple zeros are located in the interval $-1<x<1$.
(5) Every polynomial $p(x)$ with $\operatorname{deg}(p) \leq n$ can be written by

$$
p(x)=\sum_{j=0}^{n} \beta_{j} P_{j}(x),
$$

where $\beta_{0}, \beta_{1}, \cdots, \beta_{n}$ can be uniquely determined from $p(x)$.

- Using the properties of Legendre polynomials, we can derive the least square approximations of degree n to $f(x)$ on $[-1,1]$:

$$
\begin{equation*}
I_{n}(x)=\sum_{j=0}^{n} \frac{\left(f, P_{j}\right)}{\left(P_{j}, P_{j}\right)} P_{j}(x) \tag{2}
\end{equation*}
$$

Example3

Again consider the function $f(x)=e^{x}$ on $[-1,1]$. Using (2), we can obtain

$$
I_{3}(x)=1.175201+0.997955 x+0.536722 x^{2}+0.176139 x^{3} .
$$

Errors in Cubic Approximations of e^{x}

Approximation	Minimax Error	RMSE
Taylor poly.	0.0516	0.0145
Least square poly.	0.0112	0.0033
Chebyshev poly.	0.0067	0.0038
Minimax poly.	0.0055	0.0039

