### 5.2 Error Formulas

- Error Formula for Trapezoidal rule


## Theorem

Assume that $f \in C^{2}[a, b]$ and $I(f)=\int_{a}^{b} f(x) d x$. Then the error formula is

$$
\begin{equation*}
E_{n}^{T}(f)=I(f)-T_{n}(f)=-\frac{h^{2}}{12}(b-a) f^{\prime \prime}\left(c_{n}\right) \tag{1}
\end{equation*}
$$

where $c_{n}$ is in between $a$ and $b$ and $h=(b-a) / n$. We can also obtain

$$
\begin{equation*}
\left|E_{n}^{T}(f)\right|=\frac{h^{2}}{12}(b-a)\left|f^{\prime \prime}\left(c_{n}\right)\right| \tag{2}
\end{equation*}
$$

## Example1

Check the error formula (2) with $I(f)=\int_{0}^{1} 1 /(2 x+1) d x$.

- An Asymptotic Estimate of the Trapezoidal Error.

$$
\begin{equation*}
E_{n}^{T}(f) \approx-\frac{h^{2}}{12}\left(f^{\prime}(b)-f^{\prime}(a)\right)=: \widetilde{E}_{n}^{T}(f) \tag{3}
\end{equation*}
$$

where $n$ is the number of subintervals. We can also derive the following;

$$
\begin{equation*}
\left|E_{n}^{T}(f)\right| \approx \frac{h^{2}}{12}\left|f^{\prime}(b)-f^{\prime}(a)\right|=:\left|\widetilde{E}_{n}^{T}(f)\right| \tag{4}
\end{equation*}
$$

The asymptotic esitmate (3) is practically better than (1).

## Example2

Check the asymptotic estimate (4) with $I(f)=\int_{0}^{1} 1 /(2 x+1) d x$.

## - Error Formula for Simpson rule

## Theorem

Assume that $f \in C^{4}[a, b]$ and let $n$ be an even positive integer.
Then the error formula is
$E_{n}^{S}=I(f)-S_{n}(f)=-\frac{h^{4}(b-a)}{180} f^{(4)}\left(c_{n}\right)$ and $\left|E_{n}^{S}\right|=\frac{h^{4}(b-a)}{180}\left|f^{(4)}\left(c_{n}\right)\right|$
where $c_{n}$ is in between $a$ and $b$ and $h=(b-a) / n$. The asymptotic estimate can be

$$
\begin{aligned}
& \widetilde{E}(f) \approx-\frac{h^{4}}{180}\left(f^{\prime \prime \prime}(b)-f^{\prime \prime \prime}(a)\right)=: \widetilde{E}_{n}^{S}(f) \text { and } \\
& \left|E_{n}^{S}(f)\right| \approx \frac{h^{4}}{180}\left|f^{\prime \prime \prime}(b)-f^{\prime \prime \prime}(a)\right|=:\left|\widetilde{E}_{n}^{S}(f)\right|
\end{aligned}
$$

## Example3

Check the asymptotic estimate with $I(f)=\int_{0}^{1} 1 /(2 x+1) d x$.

