5.3 Gaussian Numerical Integration(Quadrature)

- In this section, the main goal is to look for numerical integration (quadrature) formulas

$$
I(f)=\int_{-1}^{1} f(x) d x \approx \sum_{j=1}^{n} w_{j} f\left(x_{j}\right)
$$

where w_{j} is called the weight and x_{j} a node point. If the function $f(x)$ is well approximated by polynomials with high degree, $\sum_{j=1}^{n} w_{j} f\left(x_{j}\right)$ will be quite accurate. Without any restrictions on the node points $\left\{x_{j}\right\}$, we can develop a quite accurate set of numerical integration formulas.

- In order to consider the Gaussian Quadrature, we need the following definition.

Definition

The degree of precision of a numerical integration is the greatest integer k for which all degree k or less polynomial are integrated exactly.

Example1

1. The degree of precision of the Trapezoid Rule is 1.
2. Find the degree of precision of the approximation (1) $\frac{1}{2}[f(0)+f(1)](2) \frac{1}{3}[f(0)+f(1 / 2)+f(1)]$ for $\int_{0}^{1} f(x) d x$
(1) Case $n=1$: we want an integration formula

$$
I(f)=\int_{-1}^{1} f(x) d x \approx w_{1} f\left(x_{1}\right)
$$

We can see that the desired formula for $I(f)$ is

$$
I(f)=\int_{-1}^{1} f(x) d x \approx 2 f(0)
$$

(2) Case $n=2$: we want an integration formula

$$
I(f)=\int_{-1}^{1} f(x) d x \approx w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

We can also see that the desired formula for $I(f)$ is

$$
I(f)=\int_{-1}^{1} f(x) d x \approx f\left(\frac{\sqrt{3}}{3}\right)+f\left(-\frac{\sqrt{3}}{3}\right)
$$

(3) Case $n>2$: we want an integration formula

$$
I(f)=\int_{-1}^{1} f(x) d x \approx w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)+\cdots+w_{n} f\left(x_{n}\right)=\sum_{j=1}^{n} w_{j} f\left(x_{j}\right)
$$

- The previous page continues here!

We need to set up $2 n$ equations for the $2 n$ unknowns. So we require the quadrature formula to be exact for the cases

$$
f(x)=x^{i}, \quad i=0,1,2, \cdots, 2 n-1
$$

Then the following linear system is obtained

$$
w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots+w_{n} x_{n}^{i}=\int_{-1}^{1} x^{i} d x \quad \text { for } i=0,1,2, \cdots, 2 n-1
$$

Look at the right side. We have

$$
\int_{-1}^{1} x^{i} d x=\left\{\begin{array}{cc}
\frac{2}{i+1}, & i=0,2, \cdots, 2 n-2,(\text { even }) \\
0 & i=1,3, \cdots, 2 n-1 \text { (odd) }
\end{array}\right.
$$

The linear system has a unique solution unless the unknowns are reordered. The resulting numerical integration rule from the nonlinear system is called Gaussian Numerical Integration (quadrature). In fact, since the nodes and weights are not found by solving this system, they are found by other methods.

Gaussian Quadrature Formulas

\# of nodes	nodes x_{i}	weights w_{i}
1	0	2
2	$\pm 1 / \sqrt{3}$	1
3	$0, \pm \sqrt{3 / 5}$	$8 / 9,5 / 9$
4	$\pm \sqrt{\frac{3-2 \sqrt{6 / 5}}{7}}, \pm \sqrt{\frac{3+2 \sqrt{6 / 5}}{7}}$	$\frac{18+\sqrt{30}}{36}, \frac{18-\sqrt{30}}{36}$
\cdots		

- The Nodes and Weights of Gaussian Quadrature Formulas $(n=2,3,4, \cdots, 8)$ are given in the Table 5.7 in page 223.

Example2

Approximate the integrals, using $n=2$ Gaussian Quadrature.
Compare with the exact value and find the error.
1.

$$
\int_{-1}^{1}\left(x^{3}+3 x^{2}\right) d x
$$

2.

$$
\int_{-1}^{1} x^{6} d x
$$

3.

$$
\int_{-1}^{1} e^{x} d x
$$

4.

$$
\int_{-1}^{1} \frac{1}{x^{2}+1} d x
$$

- Change of Interval of Integration: To approximate integrals on a general interval $[a, b]$, we can convert integrals on other finite intervals to integrals over $[-1,1]$:

$$
\int_{a}^{b} f(x) d x=\int_{-1}^{1} f\left(\frac{(b-a) t+b+a}{2}\right) \frac{b-a}{2} d t
$$

based on the change of integration variables

$$
x=\frac{(b-a) t+b+a}{2}, \quad \text { for }-1 \leq t \leq 1
$$

Example3

Using Gaussian Quadrature $n=2$, approximate the following integrals:
1.

$$
\int_{1}^{4} \ln x d x
$$

2.

$$
\int_{0}^{2} \frac{2 x d x}{x^{2}+1}
$$

- Weighted Gaussian Quadrature

Consider the modified(generalized) integral $I(f)$:

$$
I(f)=\int_{a}^{b} w(x) f(x) d x
$$

where $f(x)$ is a well-behaved (nice) function and $w(x)$ is a possible ill-behaved function. Then Gaussian quadrature can be generalized to handle such integrals $w(x)$ properly. For example,

$$
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x, \quad \int_{0}^{1} \frac{f(x)}{\sqrt{x}} d x, \quad \int_{0}^{1} f(x) \log \left(\frac{1}{x}\right) d x, \cdots
$$

We will seek numerical formulation for the following integral in the next example:

$$
I_{n}(f)=\sum_{j=1}^{n} w_{j} f\left(x_{j}\right)
$$

Example4

Consider the generalized integral

$$
I(f)=\int_{0}^{1} \frac{f(x)}{\sqrt{x}} d x
$$

Here $w(x)=1 / \sqrt{x}$. Then we can find numerical integration formulas.

1. Case $n=1$: The integration formula has the form

$$
I(f)=\int_{0}^{1} \frac{f(x)}{\sqrt{x}} d x \approx 2 f\left(\frac{1}{3}\right)
$$

2. Case $n=2$: The integration formula has the form

$$
I(f)=\int_{0}^{1} \frac{f(x)}{\sqrt{x}} d x \approx 1.304 f(0.116)+0.742 f(0.696)
$$

3. Case $n>2$: Have a look at the textbook(p.228).

Example5

It is known that

$$
\int_{0}^{1} \frac{\cos (\pi x)}{\sqrt{x}} d x \doteq 0.747966
$$

Then find $I_{1}(\cos (\pi x))$ and $I_{2}(\cos (\pi x))$. Find their absolute errors.

- When we consider the weighted Gaussian Quadrature

$$
I(f)=\int_{a}^{b} w(x) f(x) d x \approx \sum_{j=1}^{n} w_{j} f\left(x_{j}\right)=I_{n}(f)
$$

we require the following conditions on the weight function $w(x)$.
(1) $w(x)>0$ for $a<x<b$.
(2) For all integers $n \geq 0$, we have

$$
\int_{a}^{b} w(x)|x|^{n} d x<\infty
$$

