
5.4 Numerical Differentiation

There are two major reasons for considering numerical
differentiation.

1 Approximation of derivatives in (ODEs) ordinary differential
equations and (PDEs) partial differential equations: this is
done in order to reduce the differential equation to a form that
can be solved more easily than the original differential
equation.

2 Forming the derivative of a discontinuous function f (x) which
is known only as the given data {(xi ,yi ) | i = 1, · · · ,m}: yi is
given approximately, i.e., yi ≈ f (xi ) for i = 1,2, · · · ,m.



Recall the definition of derivative

f ′(x) =
df (x)

dx
= lim

h→0

f (x +h)− f (x)

h
= lim

x→a

f (x)− f (a)

x−a
,

where f is a smooth function. Then the numerical derivative
of f (x) is given by

Dhf (x)≡ f (x +h)− f (x)

h
≈ f ′(x).

Example1

Find Dhf (x) for the function f (x) = cosx at x = π/6. We can see
that the errors are nearly proportional to h. See the table in the
next page. This can be proved using the Taylor’s theorem.



h Dhf Error Ratio
1/10 −0.54243 0.04243
1/20 −0.52144 0.02144 1.98
1/40 −0.51077 0.01077 1.99
1/80 −0.50540 0.00540 1.99
1/160 −0.50270 0.00270 2.00
1/320 −0.50135 0.00135 2.00



Two types of the numerical derivative

1 The forward difference formula:

f ′(x)≈ f (x +h)− f (x)

h
, for h > 0.

2 The backward difference formula

f ′(x)≈ f (x)− f (x−h)

h
, for h > 0.

For two cases we have the error formula∣∣f ′(x)−Dhf (x)
∣∣=

h
2

∣∣f ′′(c)
∣∣ ,

where c ∈ (x , x +h) or c ∈ (x−h, h).



Using the interpolating polynomial P2(x), we can derive the
central difference formula

f ′(x)≈ f (x +h)− f (x−h)

2h

which is more accurate than the forwarded difference formula.

Theorem

Assume that f ∈ Cn+2[a, b]. Let x0,x1,x2, · · · ,xn ∈ [a, b] be n +1
distinct interpolation nodes and t ∈ [a, b] be an arbitrary given
point. Then we have

f ′(t)−P ′n(t) = Ψn(t)
f (n+1) (c1)

(n +2)!
+ Ψ′n(t)

f (n+1) (c2)

(n +1)!
,

where
Ψn(t) = (t− x0)(t− x1) · · ·(t− xn) .



Using the previous theorem, we can derive the error formula
for the central difference formula:∣∣∣∣f ′(x)− f (x +h)− f (x−h)

2h

∣∣∣∣=
h2

6

∣∣f ′′′ (c2)
∣∣

with x−h ≤ c2 ≤ x +h.



The method of undetermined coefficients

To derive an approximation for f ′′(x) at x = t, we write

f ′′(t)≈ D(2)
h f (t) = Af (t +h) +B f (t) +C f (t−h),

where A, B, and C are unknown coefficients. Then using the Taylor
polynomial approximation and assuming that f ∈ C 4[a, b], we can
get

D(2)
h f (t) =

f (t +h)−2f (t) + f (t−h)

h2 . (1)

The error formulas is∣∣∣f ′′(t)−D(2)
h f (t)

∣∣∣≈ h2

12

∣∣∣f (4)(t)
∣∣∣ . (2)



Effects of Error in Function Values

Recall that

D(2)
h f (x1) =

f (x1 +h)−2f (x1) + f (x1−h)

h2 ≈ f ′′ (x1) ,

where h > 0 is the size of subintervals. Let f̂0, f̂1, f̂2 be the actual
values used in the computation at x = x0 = x1−h, x = x1 and
x = x2 = x1 +h, respectively. Then the errors are given by

f (xi )− f̂i = εi , for i = 0, 1, 2.

Also the actual value D̂(2)
h f (x1) is defined by

D̂(2)
h f (x1) =

f̂2−2f̂1 + f̂0
h2 .

Thus we can derive the error formula∣∣∣f ′′ (x1)− D̂(2)
h f (x1)

∣∣∣≤ h2

12

∣∣∣f (4) (xi )
∣∣∣+ |ε2−2ε1 + ε0|

h2 .



The errors εi with i = 1,2,3 in the interval [−δ , δ ]. Then the
error formula becomes∣∣∣f ′′ (x1)− D̂(2)

h f (x1)
∣∣∣≤ h2

12

∣∣∣f (4) (xi )
∣∣∣+ 4δ

h2 .

Example2

Calculate D̂(2)
h f (x1) for f (x) = cos(x) at x1 = π/3. To show the

effect of rounding errors, the actual values f̂i are obtained by
rounding f (xi ) to six digits and the errors satisfy

|εi | ≤ 5.0×10−7 = δ , i = 0,1,2.

Calculation of D̂(2)
h f (xi )

h D̂(2)
h f (xi ) Error

0.5 −0.848128 0.017987
0.25 −0.861504 0.004521
0.125 −0.864832 0.001193
0.0625 −0.865536 0.000489


