5.4 Numerical Differentiation

- There are two major reasons for considering numerical differentiation.
(1) Approximation of derivatives in (ODEs) ordinary differential equations and (PDEs) partial differential equations: this is done in order to reduce the differential equation to a form that can be solved more easily than the original differential equation.
(2) Forming the derivative of a discontinuous function $f(x)$ which is known only as the given data $\left\{\left(x_{i}, y_{i}\right) \mid i=1, \cdots, m\right\}: y_{i}$ is given approximately, i.e., $y_{i} \approx f\left(x_{i}\right)$ for $i=1,2, \cdots, m$.
- Recall the definition of derivative

$$
f^{\prime}(x)=\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

where f is a smooth function. Then the numerical derivative of $f(x)$ is given by

$$
D_{h} f(x) \equiv \frac{f(x+h)-f(x)}{h} \approx f^{\prime}(x)
$$

Example1

Find $D_{h} f(x)$ for the function $f(x)=\cos x$ at $x=\pi / 6$. We can see that the errors are nearly proportional to h. See the table in the next page. This can be proved using the Taylor's theorem.

h	$D_{h} f$	Error	Ratio
$1 / 10$	-0.54243	0.04243	
$1 / 20$	-0.52144	0.02144	1.98
$1 / 40$	-0.51077	0.01077	1.99
$1 / 80$	-0.50540	0.00540	1.99
$1 / 160$	-0.50270	0.00270	2.00
$1 / 320$	-0.50135	0.00135	2.00

- Two types of the numerical derivative
(1) The forward difference formula:

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}, \quad \text { for } h>0
$$

(2) The backward difference formula

$$
f^{\prime}(x) \approx \frac{f(x)-f(x-h)}{h}, \quad \text { for } h>0
$$

- For two cases we have the error formula

$$
\left|f^{\prime}(x)-D_{h} f(x)\right|=\frac{h}{2}\left|f^{\prime \prime}(c)\right|
$$

where $c \in(x, x+h)$ or $c \in(x-h, h)$.

- Using the interpolating polynomial $P_{2}(x)$, we can derive the central difference formula

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

which is more accurate than the forwarded difference formula.

Theorem

Assume that $f \in C^{n+2}[a, b]$. Let $x_{0}, x_{1}, x_{2}, \cdots, x_{n} \in[a, b]$ be $n+1$ distinct interpolation nodes and $t \in[a, b]$ be an arbitrary given point. Then we have

$$
f^{\prime}(t)-P_{n}^{\prime}(t)=\Psi_{n}(t) \frac{f^{(n+1)}\left(c_{1}\right)}{(n+2)!}+\Psi_{n}^{\prime}(t) \frac{f^{(n+1)}\left(c_{2}\right)}{(n+1)!}
$$

where

$$
\Psi_{n}(t)=\left(t-x_{0}\right)\left(t-x_{1}\right) \cdots\left(t-x_{n}\right) .
$$

- Using the previous theorem, we can derive the error formula for the central difference formula:

$$
\left|f^{\prime}(x)-\frac{f(x+h)-f(x-h)}{2 h}\right|=\frac{h^{2}}{6}\left|f^{\prime \prime \prime}\left(c_{2}\right)\right|
$$

with $x-h \leq c_{2} \leq x+h$.

- The method of undetermined coefficients

To derive an approximation for $f^{\prime \prime}(x)$ at $x=t$, we write

$$
f^{\prime \prime}(t) \approx D_{h}^{(2)} f(t)=A f(t+h)+B f(t)+C f(t-h)
$$

where A, B, and C are unknown coefficients. Then using the Taylor polynomial approximation and assuming that $f \in C^{4}[a, b]$, we can get

$$
\begin{equation*}
D_{h}^{(2)} f(t)=\frac{f(t+h)-2 f(t)+f(t-h)}{h^{2}} . \tag{1}
\end{equation*}
$$

The error formulas is

$$
\begin{equation*}
\left|f^{\prime \prime}(t)-D_{h}^{(2)} f(t)\right| \approx \frac{h^{2}}{12}\left|f^{(4)}(t)\right| \tag{2}
\end{equation*}
$$

- Effects of Error in Function Values

Recall that

$$
D_{h}^{(2)} f\left(x_{1}\right)=\frac{f\left(x_{1}+h\right)-2 f\left(x_{1}\right)+f\left(x_{1}-h\right)}{h^{2}} \approx f^{\prime \prime}\left(x_{1}\right)
$$

where $h>0$ is the size of subintervals. Let $\widehat{f}_{0}, \widehat{f}_{1}, \widehat{f}_{2}$ be the actual values used in the computation at $x=x_{0}=x_{1}-h, x=x_{1}$ and $x=x_{2}=x_{1}+h$, respectively. Then the errors are given by

$$
f\left(x_{i}\right)-\widehat{f}_{i}=\varepsilon_{i}, \quad \text { for } i=0,1,2
$$

Also the actual value $\widehat{D}_{h}^{(2)} f\left(x_{1}\right)$ is defined by

$$
\widehat{D}_{h}^{(2)} f\left(x_{1}\right)=\frac{\widehat{f}_{2}-2 \widehat{f}_{1}+\widehat{f}_{0}}{h^{2}} .
$$

Thus we can derive the error formula

$$
\left|f^{\prime \prime}\left(x_{1}\right)-\widehat{D}_{h}^{(2)} f\left(x_{1}\right)\right| \leq \frac{h^{2}}{12}\left|f^{(4)}\left(x_{i}\right)\right|+\frac{\left|\varepsilon_{2}-2 \varepsilon_{1}+\varepsilon_{0}\right|}{h^{2}} .
$$

- The errors ε_{i} with $i=1,2,3$ in the interval $[-\delta, \delta]$. Then the error formula becomes

$$
\left|f^{\prime \prime}\left(x_{1}\right)-\widehat{D}_{h}^{(2)} f\left(x_{1}\right)\right| \leq \frac{h^{2}}{12}\left|f^{(4)}\left(x_{i}\right)\right|+\frac{4 \delta}{h^{2}}
$$

Example2

Calculate $\widehat{D}_{h}^{(2)} f\left(x_{1}\right)$ for $f(x)=\cos (x)$ at $x_{1}=\pi / 3$. To show the effect of rounding errors, the actual values \widehat{f}_{i} are obtained by rounding $f\left(x_{i}\right)$ to six digits and the errors satisfy

$$
\left|\varepsilon_{i}\right| \leq 5.0 \times 10^{-7}=\delta, \quad i=0,1,2
$$

Calculation of $\widehat{D}_{h}^{(2)} f\left(x_{i}\right)$

h	$\widehat{D}_{h}^{(2)} f\left(x_{i}\right)$	Error
0.5	-0.848128	0.017987
0.25	-0.861504	0.004521
0.125	-0.864832	0.001193
0.0625	-0.865536	0.000489

