- There are two major reasons for considering numerical differentiation.
- Approximation of derivatives in (ODEs) ordinary differential equations and (PDEs) partial differential equations: this is done in order to reduce the differential equation to a form that can be solved more easily than the original differential equation.
- Porming the derivative of a discontinuous function f(x) which is known only as the given data {(x_i, y_i) | i = 1, ···, m}: y_i is given approximately, i.e., y_i ≈ f(x_i) for i = 1,2, ···, m.

• Recall the definition of derivative

$$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a},$$

where f is a smooth function. Then the numerical derivative of f(x) is given by

$$D_h f(x) \equiv \frac{f(x+h) - f(x)}{h} \approx f'(x).$$

Example1

Find $D_h f(x)$ for the function $f(x) = \cos x$ at $x = \pi/6$. We can see that the errors are nearly proportional to h. See the table in the next page. This can be proved using the Taylor's theorem.

h	D _h f	Error	Ratio
1/10	-0.54243	0.04243	
1/20	-0.52144	0.02144	1.98
1/40	-0.51077	0.01077	1.99
1/80	-0.50540	0.00540	1.99
1/160	-0.50270	0.00270	2.00
1/320	-0.50135	0.00135	2.00

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ - 圖 - 釣��

• Two types of the numerical derivative

The forward difference formula:

$$f'(x) pprox rac{f(x+h) - f(x)}{h}, \quad ext{for } h > 0.$$

Provide the second difference formula

$$f'(x) pprox rac{f(x) - f(x-h)}{h}, \quad ext{for } h > 0.$$

• For two cases we have the error formula

$$\left|f'(x)-D_hf(x)\right|=\frac{h}{2}\left|f''(c)\right|,$$

where $c \in (x, x+h)$ or $c \in (x-h, h)$.

• Using the interpolating polynomial $P_2(x)$, we can derive the central difference formula

$$f'(x) pprox rac{f(x+h) - f(x-h)}{2h}$$

which is more accurate than the forwarded difference formula.

Theorem

Assume that $f \in C^{n+2}[a, b]$. Let $x_0, x_1, x_2, \dots, x_n \in [a, b]$ be n+1 distinct interpolation nodes and $t \in [a, b]$ be an arbitrary given point. Then we have

$$f'(t) - P'_n(t) = \Psi_n(t) \frac{f^{(n+1)}(c_1)}{(n+2)!} + \Psi'_n(t) \frac{f^{(n+1)}(c_2)}{(n+1)!}$$

where

$$\Psi_n(t)=(t-x_0)(t-x_1)\cdots(t-x_n).$$

• Using the previous theorem, we can derive the error formula for the central difference formula:

$$\left|f'(x) - \frac{f(x+h) - f(x-h)}{2h}\right| = \frac{h^2}{6} \left|f'''(c_2)\right|$$

with $x - h \le c_2 \le x + h$.

The method of undetermined coefficients

To derive an approximation for f''(x) at x = t, we write

$$f''(t) \approx D_h^{(2)} f(t) = A f(t+h) + B f(t) + C f(t-h)$$

where A, B, and C are unknown coefficients. Then using the Taylor polynomial approximation and assuming that $f \in C^4[a, b]$, we can get

$$D_h^{(2)}f(t) = \frac{f(t+h) - 2f(t) + f(t-h)}{h^2}.$$
 (1)

The error formulas is

$$\left| f''(t) - D_h^{(2)} f(t) \right| \approx \frac{h^2}{12} \left| f^{(4)}(t) \right|.$$
 (2)

• Effects of Error in Function Values

Recall that

$$D_{h}^{(2)}f(x_{1}) = \frac{f(x_{1}+h) - 2f(x_{1}) + f(x_{1}-h)}{h^{2}} \approx f''(x_{1}),$$

where h > 0 is the size of subintervals. Let $\hat{f_0}$, $\hat{f_1}$, $\hat{f_2}$ be the actual values used in the computation at $x = x_0 = x_1 - h$, $x = x_1$ and $x = x_2 = x_1 + h$, respectively. Then the errors are given by

$$f(x_i) - \widehat{f_i} = \varepsilon_i$$
, for $i = 0, 1, 2$

Also the actual value $\widehat{D}_{h}^{(2)}f(x_{1})$ is defined by

$$\widehat{D}_{h}^{(2)}f(x_{1}) = \frac{\widehat{f}_{2} - 2\widehat{f}_{1} + \widehat{f}_{0}}{h^{2}}$$

Thus we can derive the error formula

$$\left|f''(x_1) - \widehat{D}_h^{(2)} f(x_1)\right| \leq \frac{h^2}{12} \left|f^{(4)}(x_i)\right| + \frac{|\varepsilon_2 - 2\varepsilon_1 + \varepsilon_0|}{h^2}.$$

• The errors ε_i with i = 1, 2, 3 in the interval $[-\delta, \delta]$. Then the error formula becomes

$$\left| {{f}''\left({{x_1}} \right) - \widehat D_h^{\left(2
ight)}f\left({{x_1}} \right)}
ight| \le rac{{{h^2}}}{{12}}\left| {{f}^{\left(4
ight)}\left({{x_i}}
ight)}
ight| + rac{{4\delta }}{{{h^2}}}$$

Example2

Calculate $\widehat{D}_{h}^{(2)}f(x_{1})$ for $f(x) = \cos(x)$ at $x_{1} = \pi/3$. To show the effect of rounding errors, the actual values \widehat{f}_{i} are obtained by rounding $f(x_{i})$ to six digits and the errors satisfy

$$|\varepsilon_i| \le 5.0 \times 10^{-7} = \delta, \quad i = 0, 1, 2.$$

Calculation	of	$\widehat{D}_{h}^{(2)}$	$f(x_i)$
-------------	----	-------------------------	----------

h	$\widehat{D}_{h}^{(2)}f(x_{i})$	Error
0.5	-0.848128	0.017987
0.25	-0.861504	0.004521
0.125	-0.864832	0.001193
0.0625	-0.865536	0.000489