6 Numerical Solutions of O.D.Es

Dr. Jeongho Ahn
Department of Mathematics \& Statistics

ASU

Outline of Chapter 6

(1) Theory of Differential Equations
(2) Solvability for Differential Equations
(3) Stability of the IVP
(4) Euler Methods
(5) Convergence Analysis of Euler Methods

- There are many ODEs which describe physical situations, i.e, we can see many ODEs in physics or biology or chemistry or engineering or applied sciences or
- Many techniques are used in solving DEs. However, there are still many DEs that cannot be solved theoretically. In this chapter, we consider numerical methods for solving DEs.
- The first order differential equations are defined by

$$
\frac{d y}{d x}=f(x, y(x)), \quad x \geq x_{0}
$$

(1) For $a, b \in C$, the first order linear $D E$ is defined by $f(x, y(x))=a(x) y(x)+b(x)$. Then the general solutions can be found in method of integrating factors.
(2) Let $a(x)=\lambda$. The general solution of $d y / d x=\lambda y(x)+b(x)$ is

$$
y(x)=c e^{\lambda x}+\int_{x_{0}}^{x} e^{\lambda(x-t)} b(t) d t
$$

where c is an arbitrary constant. Then $c=e^{-\lambda x_{0}} y\left(x_{0}\right)$.

- As you can see in the previous page, we need to impose a condition to obtain a particular solution; $y\left(x_{0}\right)=y_{0}$.
- In many application problems, the independent variable x is considered as time and thus y_{0} is an initial condition.
- The first order DE and the initial condition provide the initial value problem (IVP);

$$
\left\{\begin{aligned}
\frac{d y}{d x}= & f(x, y(x)) \quad \text { for } x \geq x_{0} \\
& y\left(x_{0}\right)=y_{0}
\end{aligned}\right.
$$

- General Solvability Theory

Theorem

Let $f(x, y), \partial f(x, y) / \partial y \in C\left(\left(x_{0}-\alpha, x_{0}+\alpha\right) \times\left(y_{0}-\varepsilon, y_{0}+\varepsilon\right)\right)$. Then \exists ! function $y(x)$ defined on some interval $\left[x_{0}-\alpha, x_{0}+\alpha\right]$ satisfying the IVP

$$
\left\{\begin{aligned}
\frac{d y}{d x}= & f(x, y(x)) \quad \text { for } x \geq x_{0} \\
& y\left(x_{0}\right)=y_{0}
\end{aligned}\right.
$$

Example1

Is there a unique solution satisfying the following IVP

$$
\frac{d y}{d x}=3 x^{2}[y(x)]^{2} \quad y(0)=1
$$

If so, find the solution.

- When we deal with differential equations theoretically and numerically, we see the Lipschitz condition many times.

Definition

A function $f(t, y)$ satisfies the Lipschitz condition in the variable y on $R=[a, b] \times[c, d]$ if \exists constant $L>0$ such that

$$
\left|f\left(t, y_{2}\right)-f\left(t, y_{1}\right)\right| \leq L\left|y_{2}-y_{1}\right| \quad \text { for }\left(t, y_{1}\right),\left(t, y_{2}\right) \in S
$$

- Note that a function is Lipschitz in $y \Rightarrow$ the function is continuous in y. Is its converse true?

Example2

Prove that $f(t, y)=t y+t^{2}$ is Lipschitz in y for $t \in[0,1]$.

- Stability of the IVP is to consider what happens the solution $y(x)$ if a small change in the data is made.
(1) The IVP is called stable or well-conditioned if small changes in the data lead to small changes in the solution.
(2) The IVP is called unstable or ill-conditioned if small changes in the data lead to large changes in the solution.
- In order to determine whether the IVP is stable or unstable, we usually consider its perturbed problem; for $x \in\left[x_{0}, b\right]$

$$
\left\{\begin{array}{c}
\frac{d y_{\varepsilon}}{d x}=f\left(x, y_{\varepsilon}(x)\right) \\
y_{\varepsilon}\left(x_{0}\right)=y_{0}+\varepsilon
\end{array}\right.
$$

If we show that $\left|y(x)-y_{\varepsilon}(x)\right| \leq \varepsilon M$, the IVP will be stable.

- First-order linear differential equations:

$$
\frac{d y}{d x}=g(x) y(x)+h(x)
$$

The solutions will be

$$
y(x)=e^{\int g(x) d x}\left(\int e^{-\int g(x) d x} h(x) d x+C\right)
$$

Example3

Consider the following IVPs;
(1) $\left\{\begin{array}{c}\frac{d y}{d x}=-y(x)+1 \quad \text { for } x \geq 0, ~ \\ y(0)=1 .\end{array}\right.$
(2) $\left\{\begin{array}{cc}\frac{d y}{d x}=10 y(x)-11 e^{-x} & \text { for } x \geq 0, \\ y(0)=1 .\end{array}\right.$
(3) $\left\{\begin{array}{c}\frac{d y}{d x}=\lambda(y(x)-1) \quad \text { for } x \geq 0, \\ y(0)=1 .\end{array}\right.$
(4) $\left\{\begin{array}{c}\frac{d y}{d x}=-(y(x))^{2} \quad \text { for } x \geq 0, \\ y(0)=1 .\end{array}\right.$

Investigate the stability for all IVPs.

