
Hermite Interpolation

For various applications such as higher order PDEs, it is more

useful to consider polynomials p(x) that interpolate a given

function f (x) and have p′(x) interpolate the derivative f ′(x).
We recall that Lagrange interpolation does not include the

data of derivatives.

We consider a simplest and instructive example of Hermite

interpolation. Let x1, x2 be distinct points. Then a polynomial

p(x) whose degree is smallest will satisfy four conditions:

p (x1)= f (x1) , p (x2)= f (x2) , p
′ (x1)= f ′ (x1) , p

′ (x2)= f ′ (x2) .

Thus, deg(p) = 3 at most. We write a cubic polynomial

p(x) = a+b (x− x1)+ c (x− x1)
2+d (x− x1)

2 (x− x2)

rather than just writing it to be a standard cubic. This can

simplify the work as we can see later. Its derivative is

p′(x) = b+2c (x− x1)+2d (x− x1)(x− x2)+d (x− x1)
2 .

Then, we can determine four unknown quantities.



When we determine all unknown quantities, some linear

systems may be singular. See the following example.

Example1

Find a polynomial p satisfying three conditions:

p(0) = 0, p(1) = 1, p′(1/2) = 3.

As seen in the example1, the topic for the general problem

associated with such a di�culty is known as Birkho�

interpolation.

In a Hermite problem, let x1,x2, · · · ,xn be nodes. Assume that

interpolation conditions are given at xi with 1≤ i ≤ n:

p(j) (xi ) = cij for 0≤ j ≤ ki −1. (1)

Note that ki may vary with i . Thus, the total number of

conditions on a polynomial p is denoted by m and therefore

m = k1+ · · ·+kn.

We can also see that m ≥ n and deg(p) =m−1 at most.



Theorem

There ∃! polynomial p with deg(p) =m−1 satisfying Hermite

interpolation conditions (1).

The Extended Newton Divided Di�erence Method:

We can see how the N. D. D. method can be extended to

Hermite interpolation. Before we start setting up charts, we

need to understand how to handle derivative conditions at

each node xi . Let's choose a node, saying xi = x . Since its

derivative is the limiting value, we can have

lim
y→x

f [x , y ] = lim
x→y

f (y)− f (x)

y − x
= f ′ (x) .

This justi�es �rst derivatives at the node x

f [x , x ] = f ′ (x) .

Higher derivatives will be considered by the same way. We will

do some examples in the next page.



Example2

Show that (1) f [x , x , x ] = 1

2! f
′′(x) (2) f [x , x , x , x ] = 1

3! f
′′′(x)

Assuming that there are n occurrences of x , the general form is

f [x , x , · · · , x ] = 1

(n−1)!
f (n−1)(x).

Consider an example to �nd a polynomial p2n−1(x) such that

p (xi ) = f (xi ) for i = 1,2, · · · ,n,
p′ (xi ) = f ′ (xi ) for i = 1,2, · · · ,n.

Based on the N. D. D., we can get the polynomial p

p(x) = f [x1]+ f [x1, x1] (x− x1)+ f [x1, x1, x2] (x− x1)
2

+ f [x1, x1, x2, x2] (x− x1)
2 (x− x2)+ · · ·

+ f [x1, x1, · · · , xn−1, xn−1, xn, xn] (x− x1)
2 (x− x2)

2 · · ·(x− xn)
2 .

We need to understand a pattern for the formula, after setting

up tables. If there are higher derivative conditions, we can

modify the formula easily. See the next example.



Example3

Use the extended Newton Divided Di�erence Method.

1. Find a quadratic function p satisfying three conditions:

p(0) = 1, p′(0) = 3, p(1) = 2.

2. Find a polynomial satisfying �ve conditions:

f (1) = 2, f ′ (1) = 3, f (2) = 6, f ′ (2) = 7, f ′′(2) = 8.

3. Find a quartic polynomial that takes the following data:

x 0 1 2

f (x) 1 −2 22

f ′(x) −3 5



Lagrange Form:

Let the nodes be x1, x2, x3, · · · ,xn. We assume that a function

value and the �rst derivative at each node are given. Then, we

want to seek a polynomial satisfying data:

p (xi ) = ci0, p′ (xi ) = ci1 for 1≤ i ≤ n.

By the same way as we did in Lagrange interpolation, we can

write

p(x) =
n

∑
k=1

ck0Ak(x)+
n

∑
k=1

ck1Bk(x),

where Ak and Bk satisfy the following property{
Ak (xj) = δkj ,
A′k (xj) = 0,

{
Bk (xj) = 0,
B ′k (xj) = δkj .

Then we can employ the Lagrange basis function Lk with

1≤ k ≤ n to prove that{
Ak(x) =

(
1−2(x− xk)L

′
k (xk)

)
[Lk(x)]

2 ,

Bk(x) = (x− xk) [Lk(x)]
2 .



Since the degree of each basis function Lk is n−1, the degree

of Ak and Bk is 2n−1. Thus, deg(p) = 2n−1 at most.

Equivalently, we need 2n conditions on the polynomials p.

For example, consider p satisfying all data

p (x1)= f (x1) , p (x2)= f (x2) , p′ (x1)= f ′ (x1) , p′ (x2)= f ′ (x2) .

Then, the Lagrange form of the polynomial p is written by

p(x) = f (x1)A1(x)+ f (x2)A2(x)+ f ′ (x1)B1(x)+ f ′ (x2)A2(x),

where A1, A2, B1, B2 will be determined.

Example4

Find a polynomial p such that deg(p)≤ 3 and

p (0) = 1, p′ (0) = 0, p(1) = 2, p′ (1) =−1.

(1) Use the Lagrange form

(2) Use the extended N. D. D to check your answer.


