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Chapter 1 

Energy Basics 
 
 
 
Chapter Objectives: 
 
 

1. Discuss the use of energy both in the U.S. and worldwide. 
 
 

2. Define and be able to use the equation for key terms: 
displacement, velocity, acceleration, force, work, energy, and 
power. 

 
3. State Newton’s first, second, and third laws of motion. 

 
 

4. Define work and discuss the connection between work, 
energy, and power. 

 
5. Differentiate between kinetic and potential energy. 

 
 
 
 
 



The Price 
 The year 2008 was an interesting one by most standards.  In 
February of that year, Fidel Castro stepped down as the leader of 
Cuba after 59 years.  A magnitude 7.9 earthquake in the Sichuan 
Province of China killed over 69,000 people.  In the U.S., Barack 
Obama became the first African-American President in history. 

 From an energy perspective, 2008 will be remembered by 
Americans of driving age as the year that gasoline prices spiked 
over $4 per gallon.  In October of 2007, the price of gasoline was 
at a national average of $2.79 per gallon.  Just nine months later in 
July of 2008, it had risen to $4.09 per gallon.  By December of 
2008 the price had plummeted down to $1.69 per gallon.  The 
causes of this spike are simple: growing international demand for 
oil, coupled with decreasing production in several key areas, 
caused the price to shoot up as speculation over the 
future of oil changed.  The increased price 
caused drastic cutbacks in 
worldwide use, 
which caused the 
price to plummet.  
Of course, not 
everyone agrees 
on this, as a 
perusal of the 
Internet 
shows.  
There are 
some who 
would 

claim that it was a conspiracy or that it was all due to speculation.  
Most of the people who make these claims, however, have little 
understanding about how oil is explored, produced, and refined 
into gasoline, nor do they understand what the worldwide demand 
for oil products is, nor what the worldwide demand for energy is.   

 In fact, one would probably be right on the mark if they said 
that the people making these accusations did not understand 
anything about energy.  Why?  Because, with the rare exceptions 
of when a price spike or dip occurs, we do not talk about it.  The 
study of energy currently has no place in the P-16 curriculum in 
the U.S. other than the occasional definition of energy in a physical 
science class.  We in the sciences bore you to death with 
discussions of Newton’s Laws of Motion, Kirchhoff’s Laws, the 
Stefan-Boltzmann Equation, etc., because they really are important 
to your everyday life.  What we never do discuss, though, is how 
all of these things are important to your life.   

 It is a shame that we do this, as the gasoline price spike of 
2008 is not an aberration.  Things of this nature have occurred in 
the past, and they will continue to happen in the future as long as 
we rely on fossil fuels for so much of our energy.  In fact, as I 
write this, the price of gasoline is hovering at around $2.40 per 
gallon in most states, even though it was over $3.50 per gallon just 
two years ago.  Access to cheap sources of energy is incredibly 
vital to any country on Earth.  The economy and military of every 
country relies heavily on energy, and the lack of cheap sources can 
drive a country’s economy into a tailspin and put the country in a 
vulnerable position militarily.  Our educational systems need to 
discuss these issues so that people will be prepared for these 
situations in the future and find ways to head them off. 



 If you think that this is being a little overly dramatic, 
consider this one example: World War II was driven mostly by 
oil1.  Our entry into the war and our ability beat back the enemy 
and defeat them was a consequence of access to oil.  While the 
bombing of Pearl Harbor on December 7, 1941 was what officially 
got us into the war, our naval blockade of Japan’s access to the oil 
fields of Indonesia is what really precipitated it.  Japan, which has 
no native sources of cheap energy and is one of the most energy 
desperate countries in the world, needed that oil to fuel its ships 
and planes in its war against China.  Its response to the blockade 
was not to attack the U.S., but to attack the U.S. Navy, which was 
responsible for keeping the blockade active.  They hoped to break 
the blockade long enough to strengthen their supply lines to the oil 
to repel the U.S. forces after they recovered from the attack.  
However, the U.S. Navy recovered from the attack much quicker 
than expected, which ultimately led to Japan being repulsed in the 
Pacific. 

 The battle in the Pacific was not the only action being driven 
by oil.  The German military was fighting two major fronts in the 
war by the early 1940’s: North Africa and Russia.  On the surface, 
neither of these campaigns makes much sense, as North Africa had 
little in the way of resources needed by the Germans and trying to 
take Russia by force had been shown historically to be very 
troublesome (see Napoleon).  However, Germany, whose sole 
source of native energy at the time was coal, needed oil very badly 
to supply its military if it was going to continue to keep the land 
that it had conquered by the late 1930’s (running tanks and planes 
takes a lot of oil).  The best locations for Germany to get this oil 
were the Middle East and the oil fields of Russia.  Getting the oil 
from Russia meant going through Stalingrad; getting the oil from 

the Middle East meant either going through the Balkans (a bad 
idea, given the topography and local population) or going through 
North Africa.  The success of the Allies in stopping both of these 
drives was a primary reason for the eventual victory over 
Germany, as tanks and planes went abandoned by the end of the 
war due to a lack of petrol. 

 We do not have 
to go so far back 
for other 
examples of the 
importance of 
cheap energy to 
our economy or 
politics.  The 
rampant inflation 
of the 1970’s was 
driven mostly by 

the doubling of gas prices by a factor of two in 1973 due to the 
OPEC oil embargo followed by the tripling of gas prices in 1978 
over the situation in Iran and the hostage crisis.  The first Gulf War 
(1990) was driven by Saddam Hussein’s takeover of Kuwait, 
which held over 5% of the remaining oil reserves in the world at 
the time.  Today, we are still at war in the region, mostly due to the 
continued instability in the world’s oil market and our desire to 
control it. 

 Educating yourself about energy is one of the more important 
activities that you can do.  If you understand the different sources 
of energy, how they are used, and how they affect the environment, 
you will be much more likely to make good economic and 



environmental choices in the future.  Luckily for you, we have 
developed this course to help you to do just that.  Better yet, we 
have put this course in the general education curriculum to allow 
you to prepare yourself for the world rather than re-taking your 9th 
grade physical science course again.  However, before we do that, 
we need to go back and remind you of some of the 9th grade 
material so that you will understand why we do what we do in 
terms of energy.  First, we will define energy and relate it to forces.  
After this, we will discuss the laws of thermodynamics that govern 
how energy can be transferred.  Next, we will look at one 
particular form of energy: electricity. Lastly, we will discuss some 
basics about Earth itself so that we understand where our energy 
comes from and how we impact our planet by extracting it. 

Energy: Definition  
 Energy is all around us. It is in the food we eat, the gasoline 
we put in our cars, and sunlight that strikes our face. But what 
exactly is energy? We use the term often, as in "I just don't have 
any energy today." Since we are all so familiar with the word 
energy, one would think that we would all be experts on the 
subject. However, our use of the word "energy" in our everyday 
lives is somewhat different from what the word means in a 
scientific sense. For the purposes of this class, we are going to 
define energy as "the ability to do work."  

 Of course, this definition is not as useful as it would appear, 
since the word "work" in this definition also has little to do with 
our everyday usage. We do not mean “job, task” for work.  Instead, 
we mean "the transfer of energy to an object by applying a force on 
it through a distance."  Once again, we find a definition that is 

lacking, as we must now define what we mean by a force.  
Therefore, before we go forth with our definition of energy, we 
will need to backtrack a bit and review some terminology from 
physics. 

 

A Physics Primer: Position, Velocity, and 
Acceleration 
 The study of physics is concerned, to a large degree, with 
finding the position of an object at a particular time.  In both 
physics and our everyday language, “position” means the same 
thing: location.  If we say that the 
position of an object is 4 meters to 
the east of a lamppost, then we are 
specifying a unique location that 
should be able to be found by 
anyone who can see the lamppost 
and has a compass that tells 
direction.  Figure 1 shows a 
diagram of a point that is 4 meters 
to the east and 5 meters to the north 
of the origin.  This would be a valid 
way of stating the position of the 
point, although there are others.  For 
instance, you could say that it is 6.4 meters from the origin, at an 
angle of 51 degrees above east. 

 Knowing the position of an object at a particular time allows 
it to be found by anyone with a clock and knowledge of the origin 

Fig. 1: position diagram 



point.  If the object is not moving, then the position allows this 
object to be found for all time.  If the object is moving, then 
finding it becomes a bit harder, as we will need to know something 
about how it is moving in order to locate it at times in the future.  
One thing that we might wish to know is the rate at which the 
object is changing its position.  This quantity is known as the 
velocity of an object, and mathematically, it is written as: 

(Equn. 1.1) 
 
 

velocity = Δr/Δt = (change in position)/(change in time) 
 

where r is the vector that defines the position of the object and t is 
the time. The unit of velocity in the SI system is meters/second or 
m/s.  The Greek letter ∆ means “the change in.” 

 If the velocity of an object is constant, then knowledge of it 
and the position at a given time allow the object to be found for all 
time.  For example, if we notice that a bird passing over our head 
at exactly 12 noon is moving at 20 m/s due south and that this 
velocity does not change, then we will be able locate the bird’s 
position 10 seconds after this by multiplying the amount of elapsed 
time by the velocity. (Video EXAMPLE) 

 Thus, the bird will have moved 200 m in the southerly 
directions from its original position, which was directly overhead. 

 While not exactly Earth shattering, the previous example 
does illustrate a point.  If you know the position of an object at a 
particular time and the velocity of that object at that time, you can 
begin to make statements about the object’s position at a future 

time.  Of course, if the object’s velocity is changing, then using the 
model above will not tell what is going to happen in the future with 
much accuracy.  However, there are other models available that 
will allow this.  In our everyday lives, we can sometimes do this 
without pencil and paper, such as when we are able to catch an 
object that is thrown to us.  We are able to do this because, with 
practice, our brain and eyes learn to account for changes in 
position and velocity instinctively.  For word problems, we will 
need to do a lot of that same practice, but with pencil and paper, in 
order to be able to solve things so effortlessly (Hint, hint: work the 
problems at the end of the chapter). 

 Before we leave the subject of velocity, let us make a small 
aside to explain another common term: speed.  Since the position is 
a vector quantity 
(vectors are 
designated either 
with a small arrow 
over the quantity or 
by using bold print), 
the velocity is also a 
vector quantity.  
Many times, people 
will say that velocity 
is the speed of an 
object with 
direction.  This is, in fact, only true in a very special circumstance 
when we are talking about the instantaneous velocity and the 
instantaneous speed.  Strictly speaking, speed is defined as the 
distance travelled divided by the amount of time to travel. 

http://myweb.astate.edu/jpratte/phsc1014/velocity.mpeg


(Equn. 1.2) 
 
 

speed = (distance travelled)/ Δt 
 

 The reason why this is not the same as the magnitude of the 
vector quantity velocity is that that the distance travelled can be 
greater than the change in position.  To illustrate, consider the 
Daytona 500, an automobile race in which cars travel 500 miles.  
The average speed of a car in this race is 500 miles divided by the 
amount of time that it takes to complete the race.  If it were to take 
3 hours to complete the race, then the average speed would be 167 
miles/hour. (Video EXAMPLE) 

Since the 
cars finish 
the race 
where they 
start it, the 
change in 
position 
over that 
same 3 
hours is 0 
miles.  
Thus, the 
average 

velocity of a car in this race is 0 miles/hour, which just goes to 
show how senseless the Daytona 500 is.  The only time that one is 
assured that the speed is the magnitude of the velocity is when 

instantaneous speeds and velocities are under consideration, i.e. 
when ∆t is an infinitesimally small amount of time. 

 Now let us return to our 
discussion of locating objects.  
As with position, knowing the 
velocity is vital for locating an 
object; if the object has a 
constant velocity, then the 
position at a given time and the 
velocity are all that one needs to 
know to calculate its position at 
all times.  If the object’s 
velocity is not constant, then 
one would need to know the 
rate at which the velocity is 
changing.  This needs to be 
known in order to determine its 
velocity at some point in the 
future, which will be used to 
determine position.  This rate at 
which velocity changes is known as the acceleration, and is given 
by the equation: 

(Equn. 1.3) 
 
 

acceleration = a = Δv/Δt 
 

 The unit of acceleration in the SI system is 
meters/second/second, or m/s2.  Again, since the velocity is a 

http://myweb.astate.edu/jpratte/phsc1014/speed.mpeg


vector quantity, the acceleration is also one.  Some people call 
negative accelerations “decelerations” although it is still an 
acceleration. 

 As an example of how to use the acceleration, if the bird in 
the previous example had a velocity that was known to change by 
1 m/s2 in the southerly direction, then we would be able to 
determine the velocity of the bird 5 seconds after it passed 
overhead by multiplying the acceleration by the elapsed time and 
adding it to the initial velocity. (Video EXAMPLE) 

 

 

 

 

 

 

 

 Since the bird was initially flying at 20 m/s, this means that 
its velocity after 5 seconds is 25 m/s. 

Forces 
 As you might guess, the acceleration of an object can change, 
which would cause one concerned with its motion to be motivated 
to compute the rate of change of the acceleration (there is such a 

thing; it is called the jerk).  The fact is that you could continue 
defining the rates of change in an endless stream if you are really 
concerned about the motion of an object.  However, we stop at 
acceleration since it is related to a much more useful term: force.  
As discovered by Isaac Newton, the acceleration of an object is 
related directly to the net force on an object.  More precisely, he 
found that 

(Equn. 1.4) 
 

 

Fnet = ma 
 

where m is the mass of an object.  The unit of mass in the SI 
system is kilograms, which leads to forces being measured in 
kilogram m/s2, or kg m/ s2.  This is known as a Newton, which is 
represented by a capital N.  In the English system of units, forces 
are measured in pounds (lbs.), whereas the unit of mass is known 
as the slug.  Unfortunately, many books confuse this matter by 
stating conversions between pounds and kilograms, which is 
technically incorrect since pounds are force and kilograms are 
mass.  What is assumed in this conversion is that the object is at 
the Earth’s surface, where gravity is providing a force that causes 
objects to accelerate at 9.8 m/ s2. 

 This equation is just one part of a set of laws that have come 
to be known as Newton’s Laws of Motion, even though Newton 
only discovered the last two of them (Galileo is credited with 
discovering the first one).  These laws are normally stated as: 

 

http://myweb.astate.edu/jpratte/phsc1014/acceleration.mpeg


1. An object at rest, or in a state of constant 
motion, will continue in that state unless acted 
upon by an unbalanced force. 

 
2. Fnet = ma 

 
 

3. For every force, there is an equal and opposite 
reaction. 

 

 These laws are very useful tools, as they allow us to relate 
measurable quantities (acceleration) to dynamical variables, which 
can be used for all manner of calculation and observation.  They 
tell us that anytime we see an object accelerating, we know that 
there is a net force acting on it, whether we see the any other 
evidence of that force or not.  For instance, if we detect a faraway 
star moving in a circle, then we know that something is acting 
upon the star to make it do so.  By calculating its acceleration, we 
can determine the magnitude and direction of the force, which will 
allow us to search for the source force. 

 Because of our everyday experiences, though, we often 
misunderstand forces that occur here on Earth.  For instance, if you 
push a large box across the floor at a constant speed, Newton’s 
Laws state that there is no net force on the box.  However, you 
know that you are applying a force, as you can feel it in your 
muscles and bones.  What is happening is that, as you are applying 
a force to the box, friction is applying an equal and opposite force 
to keep the box from accelerating.  When you initially began to 
push the box, you were able to push harder than friction, and 
thereby accelerate the box to some velocity.  At some point, either 

the force of friction increased to match your force, or you began to 
push with less force so that the two became equal.   

 The situation becomes even more misunderstood when we 
consider a box so large that you cannot move it.  In this case, you 
are applying a force 
to the box that is 
equal to the force 
that friction is 
applying to the box, 
and there is no net 
movement.  Often, 
folks will cite 
Newton’s Third Law 
(Action-Reaction) as 
the reason for the 
lack of movement.  
However, this is 
wrong.  The reaction 
force to you pushing 
on the box is the box 
pushing on you, not 
the force of friction 
of the floor on the 
box.  Even when the box is moving across the floor at a constant 
velocity, the reaction force of the box on you is still there. 

 A better way to visualize the Action-Reaction Force Law is 
to consider two people without skates in the middle of a very 
slippery ice rink.  If either of the two attempts to walk off the ice, 
they will find that there is nothing to push on, meaning that they 



will not experience the reaction force that will propel them off of 
the ice.  Each will find that they 
can get off of the ice if they 
push off of the other.  However, 
in doing so, they will notice that 
the other person is also 
propelled off of the ice.  This is 
because in pushing on the other 
person, the other person was 
actually pushing back on them. 

Forces and Work 
 Now that we know what a force is, we are ready to get back 
to our definition of work.  We said at the beginning of this chapter 
that work is the transfer of energy by applying a force through a 
distance.  If the force is unchanging, then we can write the work 
as: 

(Equn. 1.5) 

W = Fd 
 

where F is the applied force and d is the distance through which 
the force is applied. The units of work in the SI system are newton-
meter, or joule, named after James Joule, the scientist that 
discovered the First Law of Thermodynamics.  The end of the 
chapter discusses other units of energy. 

 If the force is constant, calculating the work that is done is 
quite simple: multiply the constant force times the total distance 

traveled.  If the force is changing in some manner, we can still use 
the above equation, but we must break it up into small chunks.  For 
this situation, we divide the total distance traveled into small 
segments over which the force does not change that much.  If we 
can take the force to be nearly constant, then the work over that 
little segment is just the force times the small distance segment.  
Doing this for all of the small distance segments and then adding 
all of the small works will give the total work over the total 
distance traveled.  

 Before proceeding any further, we need to point out that the 
force used in Equation 1.5 is only that portion of the force that is 
parallel to the path of travel.  Figure 3 shows a diagram of two 
different boxes that are 
being pushed across a 
floor with the same force 
F.  In the first case (box 
with the fish on it), the 
force is parallel to the 
surface of the floor, 
whereas the second box 
(box with tree) is being pushed at an angle θ with respect to the 
surface of the floor.  If both boxes move the same distance d, then 
the work done on the first box is F d, while the work done on the 
second box is less.  This is because it is only that portion of the 
force that is parallel to the surface of the floor (F times the cosine 
of θ or F cos θ) that is doing work in moving it across the floor.  
Some portion of the force (F sin θ) is going towards pushing the 
box into the ground, and is doing nothing more than increasing the 
force of friction on the box.  In the extreme case, the angle θ would 

Fig. 2: two people on ice 

Fig. 3: Boxes being pushed on floor 



be 90o (pointing straight down), in which no work would be done, 
as the box would not move parallel to the surface of the floor. 

 This can also be applied when you lift up the box and carry it 
across the room.  While you are lifting the box, you are applying 
the force in the direction that the box is moving, and are thus doing 
work on the box.  However, as you carry the box across the room, 
the force that you are applying to hold the box up is not doing any 
work on the box, even though the box is moving and a force is 
being applied to it.  Since the force that holds the box up is 
perpendicular to the direction of motion, it does no work on the 
box.  The only work you are doing on the box is the small amount 
of force that you are applying to keep it moving across the room 
times the distance you move it.   

Relationship Between Work and Energy 
 So far, we have been looking at the world from the 
standpoint of doing work on objects in order to transfer energy to 
them.  This standpoint is perfectly valid.  However, you might 
remember that we defined energy as “the ability to do work”.  
Thus, it would seem that there is an alternative view that looks at 
the world from the standpoint of expending energy in an effort to 
perform work on other objects.  To get a better understanding of 
this view, it might help if we discuss a concrete example of energy.  
To do this, we must first define two different types of energy: 
kinetic energy and potential energy. 

 Kinetic energy is the energy that an object has because it is 
moving.  A car traveling down the highway at 50 miles per hour 
has kinetic energy, as does a baseball that is thrown at 100 miles 
per hour.  By slamming into other objects, they will be able to do 

work, since their momentum will cause them to apply a force 
through a distance as they collide.  How much kinetic energy they 
have is determined by the formula: 

(Equn. 1.6) 
 
 

Kinetic energy = K.E. = (1/2) m v2 

 

 Since the car has so much more mass than the baseball, it will 
have much more kinetic energy, even though it is moving at half of 
the velocity.  Anyone who has been hit by both a car and a 
baseball, and survived, can attest to this. 

 Potential energy is the energy that an object has because 
there is a force operating on it in a direction in which it is able to 
move.  A book perched on the top of a shelf has gravitational 
potential energy since gravity is pulling it toward the ground, and 
there is a distance between the shelf and the floor through which it 
can move.  Likewise, a uranium-238 nucleus has nuclear potential 
energy since the protons and neutrons can move under the 

influence of the forces 
acting on them (strong 
and weak nuclear forces) 
to be more tightly bound.  
Since the forces involved 
in the potential energy 
will change depending 
upon the object and 
situation, there is no way 
to write one formula that 
will cover all types of 



potential energy.  However, we can readily derive the formula for a 
given object by simply considering the amount of work that is 
required to move the object from one place to another. 

 As an example, let us consider moving an object near the 
surface of the Earth.  In 1684, Isaac Newton wrote that the force of 
gravity between two objects of mass m1 and m2 that are separated 
by a distance r is given by: 

(Equn. 1.7) 
 

F = G m1 m2/r2 

 

In this equation, G is a universal constant.  If we consider an object 
with mass m that is being attracted to Earth (mass = mE), then we 
can re-write the equation as 

F = G m mE/r2 

 Since the Earth is so large (radius = 6,300 km), the difference 
in force between an object that is at the surface, and one that is a 
kilometer above the surface is less than .04%.  This means that, for 
all intents and purposes, the force of gravity near the surface of the 
Earth on an object is a constant.  By plugging in the appropriate 
values for G, mE, and r, we get that the force is 

(Equn. 1.8) 
 
 

F = mg 
 

where the constant g is called the acceleration due to gravity and is 
given by  

g = 9.8 m/s2 

 This value is good for objects within 20 kilometers of the 
surface of Earth.  If you are considering some mass much further 
out than that, or that is near the surface of another planet or moon, 
you will have to go back to Newton’s Universal Law of Gravity 
(Equn. 1.7) and calculate what the acceleration due to gravity is for 
that situation. 

 Now, let us consider an object 
of mass m that is a height h above the 
ground (fig. 4).  In order to get the 
object to the height h, we had to pick 
the object up from the ground and lift 
it to h.  This would require that we 
offset the force of gravity, i.e. we 
have to lift it with a minimum force 
of F = mg.  From Equation 1.5, this 
means that we had to do an amount 
of work equal to  

(Equn. 1.9) 
 

 

W = F d = (mg)(h) = mgh 
 

 Since this is the amount of work that was required to lift it to 
h, then the amount of potential energy that the object acquired is 
this.  Thus, the gravitational potential energy of the object is mgh.  

Fig. 4: Lifted box 
 



Since we have not designated any object mass or height, this 
equation (P.E. = mgh) is true for any object near the surface of the 
Earth. (Video EXAMPLE) 

 This type of procedure can be done for any system that stores 
potential energy.  For forces that vary with distance, calculus must 
be used to sum up all of the little work segments, as we discussed 
previously.  A spring operates with a force given by F = -kx, where 
k is a constant and x is the distance the spring is compressed or 
extended from equilibrium.  This results in a potential energy of 
P.E. = (1/2) kx2.  The force between two charged particles q1 and 
q2 is F = K q1 q2/r2, where K is a constant, q1 and q2 are the charges 
magnitude, and r is the distance between them.  This system has a 
potential energy given by P.E. = K q1q2/r. 

Transferring Energy 
 Both kinetic and potential 
energy are types of mechanical 
energy.  All forms of energy can be 
classified into these two categories.  
Electricity is a form of kinetic 
energy, since it is the movement of 
the electrons that is used for all of 
the work.   

Chemical energy, such as that found 
in food or gasoline, is a form potential energy.  The energy that is 
released when chemical energy is used comes from the forces 
between atoms and molecules that are allowed to operate.  Table 1 
has examples of energy with designations as to type. 

 Because energy can be used to do work on another object, it 
can be transferred from one form to another.  Let us, once again, 
look at the example of the object that 
is at a height h above the floor.  When 
it is at a height h, we say that it has 
potential energy of mgh.  If we release 
the object, gravity is allowed to act 
upon it, and it accelerates.  Its 
acceleration means that it is acquiring 
kinetic energy (1/2 mv2).  However, 
as it accelerates downward, it is 
losing height, and thus, potential 
energy.  Right before the object hits 
the ground, it has lost all of its 
potential energy.  This amount of 
energy has been converted to kinetic 
energy, which the object will give to the Earth when it strikes it.  

 Since there is no other energy input or output (assuming 
negligible wind resistance) into the situation, we know that all of 
the kinetic energy at the moment of impact is equal to all of the 
potential energy initially.  Thus, 

 mghinitial = 1/2 m vfinal
2 

Since both sides of this equation are linear in the mass of the 
object, we can cancel them, and solve for the velocity.  Doing so 
yields 

 vfinal = (2gh)1/2  

 

TABLE 1 
 

ENERGY 
 

TYPE 
 

electricity 
 

kinetic 
 

solar 
 

kinetic 
 

fossil fuels 
 

potential 
 

nuclear 
 

potential 

Fig. 5: Diagram of falling box 
 

http://myweb.astate.edu/jpratte/phsc1014/potential.mpeg


 This equation shows that the final velocity of the object only 
depends upon the initial height of the object, something that 
Galileo discovered back in the 1600’s by dropping cannon balls of 
different size. (Video EXAMPLE) 

Simple Machines 
 This type of situation in which there is no net energy input or 
output is an example of the conservation of energy principle.  
Energy will be transferred from one form to another, but it will not 
degrade or increase.  This is the basis for a classification of simple 
devices known as simple machines.  These devices allow one to 
move large objects with small forces by taking advantage of the 
fact that energy is not lost.  In essence, they are force multipliers.  
The most common simple machines are the lever, the fulcrum, the 
wheel and axle, the block and tackle, and the inclined plane. 

 Figure 6 shows a 
diagram of an inclined 
plane.  This device is used 
to lift object above the 
ground.  As we have 
already seen above, one 
can lift an object straight 
up to a height h.  Doing so 
will require that the 
person supply a force equal 
to gravity (F=mg) and do an amount of work equal to mgh.  By 
using the inclined plane to lift the object, this person will only have 
to supply a force equal to that component of gravity that is along 
the path of the plane.  Using simple geometry, we can see that this 

component is given by mg sin θ.   Since sin θ = h/L, this means 
that the force that must be supplied to push the object up the plane 
is F = mgh/L, which is less than mg.  However, the amount of 
work that must by done is the same as above because the force 
must be applied over a longer distance L,  

 W = F L = (mgh/L) L = mgh 

 Thus, the incline plane allows for a smaller force to be 
applied over a longer distance, resulting in the same amount of 
work done, but a larger object being moved.  The same thing holds 
true for all other simple machines. 

Power 
 Simple machines are sometimes used to make people think 
that they are getting something for nothing (you get a greater force, 
but it requires that you apply the force longer).  In a similar 
fashion, power is sometimes used to do the same thing.  Power is 
the rate at which work is done or energy is expended, depending 
upon the situation.  In other words, 

(Equn. 1.10) 
 

P = ΔE/Δt 
 

  The SI unit for power is the watt, which is equal to a 
joule per second.  As an example, a 100 W lightbulb is using 100 

Fig. 6: Box on an incline plane 

http://myweb.astate.edu/jpratte/phsc1014/kinetic.mpeg


joules of energy every second in order to emit light.  The confusion 
comes into play because power and energy are sometimes used 
interchangeably.  For instance, an advertiser can claim that a 
product will save consumers money because it uses very low 
power. 

 While our appliances are rated by 
power, we are charged for the 
energy we use, usually in 
units of kilowatt-hours.  
It makes sense to charge 
this way, since it is the 
energy that determines 
how much total work 
gets done.  This is not 
to say that one can 
neglect power.  In 
particular, the electric 
company has to be very 
concerned with power.  When many 
people use appliances at the same time (ex. air conditioners during 
a hot summer), a tremendous amount of energy must be supplied in 
a very short amount of time.  Even though the electric company 
might have a lot of energy on hand (ex. large stacks of coal), 
unless they can supply the energy fast enough, a brownout or 
blackout will ensue.  For this reason, most electric plants are rated 
by the maximum power that they can output. 

 Knowing this relationship between power and energy can be 
very useful to you.  It allows you to determine how much energy 
you use when you turn on appliances. 

 ∆E = P ∆t 

 For example, if you leave a 5,000 W stove on for 2 hours, 
then you have used  

∆E =(5,000 W)(2 hr) = 10,000 Whr = 10 kWhr 

 Multiplying this usage by the rate that your electric company 
charges you will tell how much money it cost for this operation.  
Most companies charge somewhere between $.05-$.20/kWhr.  
This would mean that the stove operation above costs between 
$.50-$2.00. 

 

Energy Use: History 
 From the earliest days, humankind has recognized the need to 
use energy to condition the environment around it.  Wood was 
needed to heat homes and to cook food. Beasts of burden were 
needed to plow fields and to provide transportation.  When either 
of these commodities became scarce, hardship prevailed, and 
solutions were sought.  In ancient Rome, for example, the lack of 
available firewood led to the passing of laws that made it illegal to 
build a house or structure that would block another person's home 
from getting sunlight, as this was the primary method of heating 
homes without fire.  

 In the 20th Century, fossil fuels (oil in particular) reigned 
supreme as the energy of choice. The ubiquitous nature of this type 
of fuel created historically low prices for energy. This led to a 
substantial increase in the number of mechanized tools used by the 



average citizen, which has 
continued into the 21st 
Century.  In 2014, the U.S. 
had a population of about 
319 million people that 
were driving over 250 
million passenger vehicles2.  
Most every home in 
America has a television, 
some type of range or stove, 
and a refrigerator.  Almost 
90% of all households have 
their own air conditioner3, a 
huge jump over what it was 
just 20 years ago (68%).  Of 
course, this cheap price for 
energy does not come 
without some political and 
economic consequences, as 
mentioned above.  

 

Energy Use in the U.S. 
 This modern dependence on many appliances of convenience 
requires a lot of energy. Our current energy per capita use is about 
303 million Btu's of energy4. Put another way, this means that the 
average U.S. citizen would be responsible for using about 56 
barrels of crude oil each year, if all of the energy used in America 
came from oil. While this is not the worst worldwide in terms of 

usage, it is far from the best.  Several tourist islands (ex. U.S. 
Virgin Islands) and oil-rich countries in the Middle East use 
significantly more (more than twice).  A few Western countries, 
like Canada and Iceland, use 
slightly more. Most of the 
Western world, such as Germany 
and France, uses 200 million 
Btu's of energy or less. In 
comparison, many Third World 
countries such as Ethiopia use 
less than 10 million Btu's per 
person.  

 While China uses 
significantly less per capita 
(about 85.1 million Btu’s in 
2012), the larger population puts 
its energy usage almost equal to 
our own.  For the last decade, we 
have been fairly consistent in our 
energy usage per year, averaging 
about 100 quadrillion Btu’s per 
year. We have done this in light of the fact that our population is 
slowly increasing.  In contrast, China has more than doubled their 
usage during that time, as it attempts to become the world’s 
superpower.  This has increased demand for all types of energy 
worldwide, which caused the price to go up.  One good reason the 
price of oil was so high in 2008 was that China went from using 4 
million barrels per day in 1999 to almost 8 million per day in 2008. 



 The majority of the energy used in the U.S. (81%) is supplied 
by fossil fuels. Petroleum accounts for the largest share of this 
(36%), followed quickly by natural gas (29%) and coal (16%). The 
remaining energy comes mostly from nuclear (9%) and renewable 
sources like hydroelectric, solar, and wind (10%)5. Contrary to 
common belief, most of this energy is produced domestically. The 
only energy source which we are forced to import is crude oil, of 
which we can currently supply only about 66% of our need. 

 Of the energy used in the U.S., about 22% of it is used for 
industrial processes (mining, milling, etc.), 40% of it is used to 
create electricity to power our homes and offices, and 28% of it is 
used for transportation. While most of us cannot directly affect the 
amount of energy used for industrial processes, we can do 
something about our residential and transportation energy use. The 
figures above mean that about 100 million Btu's are used each year 
just to run our households (this does not include the energy that 
was lost in producing and transporting this energy, which accounts 
for an additional 70 million Btu's). The larges portion of this 
energy use is to heat and cool our homes (42%)6.  

 

Other Units of Energy 
      As we will point out very clearly in the next chapter with our 
discussion of temperature, the metric or SI system is not always the 
best system to use, contrary to what your high school science 
teacher said.  There are some very clear examples where other 
systems of units are superior when we discuss certain applications.  
There are two units of energy that clearly better to use than the 
joule when we discuss HVAC systems and the human body.  

      If you have ever purchased a new air conditioner or heater, the 
salesperson, more than likely, discussed how many Btu’s the 
device either removed from the air or emitted.  A Btu, or British 
thermal unit, is the amount of energy required to raise the 
temperature of one pound of water one degree Fahrenheit.    
Conversely, it is also the amount of energy that is given off from 
one pound of water in reducing its temperature by one degree 
Fahrenheit.  This is important in the HVAC industry, as most 
industrial HVAC systems use water as the medium for moving 
energy from the centralized boiler/chiller to all parts of the 
building.   

     The unit of energy that is important in biological systems 
presents a clear case of how to confuse people by using a term that 
is familiar to them to define something different.  This unit is the 
calorie, which is the amount of energy needed to raise the 
temperature of one gram of water one degree Celsius.  However, 
this is not the unit that most of the public uses to determine how 
much energy is in their food.  What you see listed on the label of 
any item in a grocery store is more accurately called a food calorie.  
One food calorie is equal to 1,000 calories, or one kilocalorie.  
This means that a food calorie is the amount of energy needed to 
raise the temperature of one kilogram of water one degree Celsius.  
Thus, a candy bar that says that it has “350 calories” which is 
really 350 food calories, has enough energy raise the temperature 
of 350 kilograms (770 pounds) one degree Celsius.  As you will 
find in the next chapter, this is a large amount of energy. 

 

 



Problems 
 

1. How much work do you do by lifting a 15 kg box two meters 
into the air? 

2. What happens to the kinetic energy of a car as it rolls up an 
incline and stops? 

3. If a constant net force of 300 N is applied to a 25 kg box, 
what is its acceleration? 

4. If a 20 kg ball is dropped from a height of 3.8 m. 
a) What is its potential energy right before it is dropped? 
b) If we neglect air resistance, what will be its kinetic energy 
right before it hits the ground? 
c) What is its speed right before it hits the ground? 

5. What will happen to world energy prices if China continues 
to increase its usage at the rate that it did over the last 
decade?  Is there any way that we in the U.S. can guard 
against such a price increase? 

6. What would happen to the force of gravity between two 
objects if they were moved to twice the distance apart?  What 
would happen if the distance were halved? 

7. If you carry a large box across a level floor at a constant 
velocity, are you doing any work on the box? 

8. If a 100 W lightbulb is left on for 10 hours, how much energy 
does it use?  If that energy costs $.10 per kilowatt-hour, how 
much does this usage cost? 

9. A car is moving at 25 miles per hour along a straight stretch 
of road.  It accelerates to a velocity of 50 miles per hour.  By 
how much does its kinetic energy increase? 

10. Newton’s Third Law states that, for every force, there is a 
reaction force.  If this is true, how can there ever be a net 
force? 

 

References 
1. Yergin, Daniel, The Prize: The Epic Quest for Oil, Money, & 

Power, 1993. 
2. Bureau of Transportation Statistics, 

http://www.fhwa.dot.gov/policyinformation/statistics/2014/, 
June 30, 2016. 

3. http://www.eia.gov/consumption/residential/reports/2009/air-
conditioning.cfm?src=%E2%80%B9%20Consumption%20%
20%20%20%20%20Residential%20Energy%20Consumptio
n%20Survey%20%28RECS%29-f5, January 3, 2015. 

4. http://www.eia.gov/totalenergy/data/monthly/pdf/sec1_17.pd
f, June 30, 2016. 

5. http://www.eia.gov/totalenergy/data/monthly/pdf/sec1_7.pdf, 
June 30, 2016. 

6. http://www.eia.gov/todayinenergy/detail.cfm?id=10271, 
January 3, 2015 

 

  

http://www.eia.gov/consumption/residential/reports/2009/air-conditioning.cfm?src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20%28RECS%29-f5
http://www.eia.gov/consumption/residential/reports/2009/air-conditioning.cfm?src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20%28RECS%29-f5
http://www.eia.gov/consumption/residential/reports/2009/air-conditioning.cfm?src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20%28RECS%29-f5
http://www.eia.gov/consumption/residential/reports/2009/air-conditioning.cfm?src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20%28RECS%29-f5
http://www.eia.gov/todayinenergy/detail.cfm?id=10271

	(Equn. 1.1)
	(Equn. 1.2)
	(Equn. 1.3)
	(Equn. 1.4)
	(Equn. 1.6)
	(Equn. 1.7)
	(Equn. 1.8)
	(Equn. 1.9)
	(Equn. 1.10)

