Jake A. Qualls, Ph.D.

Assistant Professor of Bioinformatics

  1. Lung cancer screening with low-dose CT scans using a deep learning approach, Jason L. Causey, Yuanfang Guan, Wei Dong, Karl Walker, Jake A. Qualls, Fred Prior, and Xiuzhen Huang. arXiv:1906.00240, 2019.
  2. Arkansas AI-Campus Method for the 2019 Kidney Tumor Segmentation Challenge, J. L. Causey, J. Stubblefield, T. Yoshino, A. Torrico, Jake A. Qualls, and X. Huang. Kidney and Kidney Tumor Segmentation Challenge (KiTS19). 2019.
  3. Minor QTLs mining through the combination of GWAS and machine learning feature selection. Wei Zhou, Emily Bellis, J. Stubblefield, J. L. Causey, Jake A. Qualls, Karl Walker, Xiuzhen Huang. BioRxiv:712190, 2019.
  4. CNNcon: A Quantitative Imaging Tool for Lung CT Image Feature Analysis. J. L. Causey, Jake A. Qualls, J. H. Moore, F. Prior, and X. Huang. BioRxiv:615492, 2019.
  5. Highly accurate model for prediction of lung nodule malignancy with CT scan, Jason L. Causey, Junyu Zhang, Shiqian Ma, Bo Jiang, Jake A. Qualls, David G. Politte, Fred Prior, Shuzhong Zhang and Xiuzhen Huang. Scientific Reports. August 2018.
  6. CS1 students' understanding of computational thinking concepts, Jake A. Qualls, Michael M. Grant, and Linda B. Sherrell. Journal of Computing Sciences in Colleges. Vol 26, Issue 5, 62-71. May 2011.
  7. Why computational thinking should be integrated into the curriculum, Jake A. Qualls and Linda B. Sherrell. Journal of Computing Sciences in Colleges. Vol 25, Issue 5, 66-71. May 2010.