The Chi-Square Test

Not all research involves interval-level data

For example, responses might be:

yes, no, undecided <u>strongly agree, agree, disagree, strongly disagree</u>

People might be categorized as

Republican, Democrat, or Independent

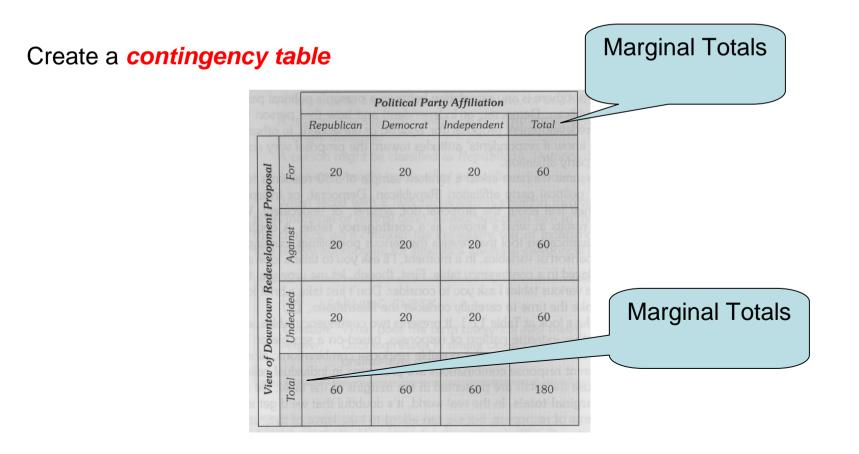
School might be classified as

1A, 2A, 3A, etc

Often use the *Chi-Square Test* to analyze these type of responses

We look at *association*, rather than means

For example,


Is political affiliation associated with attitude toward an issue?

Is gender associated with selection of an academic major?

Is place of residence associated with attitude toward an issue?

We want to determine if there's any association between a person's political affiliation (*Republican, Democrat, Independent*) and their attitude towards a downtown renovation project (*for, against, undecided*).

Randomly survey 180 people asking them for the political affiliation and how they feel about the proposal.

	Political Party Affiliation				
	Republican	Democrat	Independent	Total	
For	20	20	20	60	
otal Undecided Against For	20	20	20	60	
Undecided	20	20	20	60	
Total	60	60	60	180	

		Political Party Affiliation				
		Republican	Democrat	Independent	Total	
View of Downtown Redevelopment Proposal	For	40	10	10	60	
	Against	10	40	10	60	
	Undecided	10	10	40	60	
View of	Total	60	60	60	180	

Fairly even distribution of cases over all the cells, hence

probably little, if any, association between the two variables

If a greater concentration in a few cells, then

a greater chance that there's some sort of association

If we determine there is an association between political affiliation and viewpoint, then if we know one we can predict the other.

CAUTION: Just because there's association <u>does not</u> mean there's <u>causation</u>

We may find an association between receiving high grades in math and high grades in science, *BUT* we would not say that receiving high grades in math <u>CAUSES</u> high grades in science.

<u>NULL HYPOTHESIS</u>: There is no association between political affiliation and viewpoint about downtown renovation.

ANOTHER EXAMPLE:

You randomly sample 98 people at the mall asking them what type of community they live in (*urban, suburban, or rural*) and whether they intend to vote (yes, no, undecided).

32

29

37

Your contingency table is as follows:

Observed Frequencies

	Ty	Type of Community			
	Urban	Suburban	Rural		
Yes	8	17	7		
No	6	8	15		
Undecided	19	7	11		

32

33

33

Calculate the marginal totals for each row and each column

EXPECTED Frequencies

Cell = (Row Total *times* Column Total) / n

		Ту	Type of Community			
		Urban	Suburban	Rural		
Voter Intention	Yes	8	17	7		
	No	6	8	15		
	Undecided	19	7	11		
	<u></u>	33	32	33		

Urban, Yes =

 $(32 \times 33)/98 = 10.78$

Suburban, Yes =

 $(32 \times 32)/98 = 10.45$

32 Rural, Yes =

(32 x 33)/98 = 10.78

Urban, No =

(29 x 33)/98 = 9.77

37 Suburban, No =

 $(29 \times 32)/98 = 9.47$

etc

Observed Frequencies							
		Ty	Type of Community				
	Rural						
	Yes	8	17	7			
Voter Intention	No	6	8	15			
	Undecided	19	7	11			

Expected Frequencies					
		Тур	e of Commu	nity	
Urban Suburban Rural					
	Yes	10.78	10.45	10.78	
Voter Intention	No	9.77	9.47	9.77	
	Undecided	12.46	12.08	12.46	

$$\chi^2 = \sum \frac{(f_{\rm o} - f_e)^2}{f_e}$$

		Observed	Expected		x	-8:
	9	fo	f _e	(f _o - f _e)	$(f_o - f_e)^2$	$(f_o - f_e)^2/f_e$
Urban	Yes	8	10.78	-2.78	7.73	0.72
Suburban	Yes	17	10.45	6.55	42.90	4.11
Rural	Yes	7	10.78	-3.78	14.29	1.33
Urban	No	6	9.77	-3.77	14.21	1.45
Suburban	No	8	9.47	-1.47	2.16	0.23
Rural	No	15	9.77	5.23	27.35	2.80
Urban	Undecided	19	12.46	6.54	42.77	3.43
Suburban	Undecided	7	12.08	-5.08	25.81	2.14
Rural	Undecided	11	12.46	-1.46	2.13	0.17

16.38 =
$$\chi^2$$

Observed Frequencies

Degrees of Freedom =				
number of rows – 1				
times				
number of columns – 1				

df = (r-1)(c-1)= (3-1)(3-1)= 2 x 2= 4

		Type of Community				
		Urban	Suburban	Rural		
	Yes	8	17	7		
Voter Intention	No	6	8	15		
	Undecided	19	7	11		

Critical Values for Chi-Square (χ^2)

Degrees of Freedom	LEVEL	OF SIGNIFI	CANCE
(df)	.10	.05	.01
	2.706	3.841	6.635
2	4.605	5.991	9.210
3	6.251	7.815	11.345
4	7.779	9.488	13.277
5	9.236	11.070	15.086
6	10.645	12.592	16.812
7	12.017	14.067	18.475
8	13.362	15.507	20.090
9	14.684	16.919	21.666
10	15.987	18.307	23.209
11	17.275	19.675	24.725
12	18.549	21.026	26.217
13	19.812	22.362	27.688
14	21.064	23.685	29.141
15	22.307	24.996	30.578
16	23.542	26.296	32.000
17	24.769	27.587	33.409
18	25.989	28.869	34.805
19	27.204	30.144	36.191
20	28.412	31.410	37.566
21	29.615	32.671	38.932
22	30.813	33.924	40.289
23	32.007	35.172	41.638
24	33.196	36.415	42.980
25	34.382	37.652	44.314

Critical Value for α=.05 Is 9.488 or **9.49**

$\chi^2 = 16.38$

Hence, we reject the null hypothesis that there is no association between type of community and intention to vote.

POWER

Effect Size: .10 – small .25 – medium .40 – large

E.S. =
$$\sqrt{(\chi^2/(\chi^2+n))}$$

= $\sqrt{(16.38/(16.38+98))}$
= $\sqrt{(16.38/115.68)}$
= $\sqrt{0.14}$

Large effect size, hence we are confident there is an association between type of community and intention to vote

= .38