

Relative Mechanical Properties of Materials at Room Temperature

ASU

S.

C1 C1	Hardness	Toughness	Stiffness	Strength/Density
Jass fibers	Diamond	Ductile metals	Diamond	Reinforced plastics
Graphite fibers	Cubic boron nitride	Reinforced plastics	Carbides	Titanium
Kevlar fibers	Carbides	Thermoplastics	Tungsten	Steel
Carbides	Hardened steels	Wood	Steel	Aluminum
Molybdenum	Titanium	Thermosets	Copper	Magnesium
Steels	Cast irons	Ceramics	Titanium	Beryllium
Fantalum	Copper	Glass	Aluminum	Copper
Fitanium	Thermosets	Ceramics	Tantalum	
Copper	Magnesium	Reinforced	plastics	
Reinforced	thermosets	Thermoplastics	Wood	
Reinforced	thermoplastics	Tin	Thermosets	
Thermoplastics	Lead	Thermoplastics		
Lead	Rubbers	-		

Mechanical Properties of Various Materials at Room Temperature

				Elongation in 50 mm
Metals (Wrought)	E (GPa)	Y (MPa)	UTS (MPa)	(%)
Aluminum and its alloys	69–79	35-550	90-600	45-4
Copper and its alloys	105-150	76-1100	140-1310	65–3
lead and its alloys	14	14	20-55	50-9
Magnesium and its alloys	41-45	130-305	240-380	21-5
Molybdenum and its alloys	330-360	80-2070	90-2340	40-30
Nickel and its alloys	180-214	105-1200	345-1450	60-5
Steels	190-200	205-1725	415-1750	65-2
Fitanium and its alloys	80-130	344-1380	415-1450	25-7
Fungsten and its alloys	350-400	550-690	620-760	0
Nonmetallic materials				
Ceramics	70-1000	_	140-2600	0
Diamond	820-1050	_	_	_
Glass and porcelain	70-80	_	140	_
Rubbers	0.01-0.1	_	_	_
Thermoplastics	1.4-3.4	_	7-80	1000-5
Thermoplastics, reinforced	2-50	_	20-120	10-1
Thermosets	3.5-17	-	35-170	0
Boron fibers	380	-	3500	0
Carbon fibers	275-415	_	2000-3000	0
Blass fibers	73-85	_	3500-4600	0
Kevlar fibers	62-117	-	2800	0
<i>Note</i> : In the upper table the lowest Multiply gigapascals (GPa) by 145	values for E, Y, and U 5,000 to obtain pounds	TS and the highest va per square in. (psi), n	alues for elongation are for negapascals (MPa) by 145	pure metals. to obtain psi.

True Strain

An expression for the so-called "true strain," which is based on the summation of incremental strains based on *current* length I, can also be found if the deformation is homogeneous and the axial strain is known

$$\varepsilon_t = \int_{l_0}^{l} \frac{\mathrm{d}l}{l} = \ln \frac{l}{l_0} = \ln(1+\varepsilon)$$

Remember that the formulas for "true stress" and "true strain" written in terms of the nominal strain are valid only when the deformation is homogeneous, that is, they are valid only up to the point at which necking begins. Thereafter, these formulas no longer apply.

41

S Harachampaign, 1998

ME 4563 Intro to Manufacturing

ASU		Hai	dnes	ss T	ests	
Test	Indenter	Shape of is Side view	ndentation Top view	Load,	P Hardness number	General characteristics
Brinell	10-mm steel or tungsten carbide ball			500 kg 1500 kg 3000 kg	$HB = \frac{2P}{(p D) (D\sqrt{-D^2 - d^2})}$	of hardness- testing methods and formulas for
Vickers	Diamond pyramid		$\overset{\iota}{\succ}$	1-120 kg	$HV = \frac{1.854P}{L^2}$	calculating hardness. The
Кпоор	Diamond pyramid	L/b = 7.11 b/t = 4.00		25g-5kg	HK $=\frac{14.2P}{L^2}$	quantity <i>P</i> is the load applied. <i>Source</i> : H. W.
Rockwell A C D	Diamond cone			kg 60 150 100	HRA HRC HRD = 100 - 500t	Hayden, et al., The Structure and Properties
$\left. \begin{smallmatrix} B \\ F \\ G \end{smallmatrix} \right\}$	$\frac{1}{16}$ in. diameter steel bal	$\int t = mr$	n 🔘	100 60 150	$\left. \begin{array}{c} HRB \\ HRF \\ HRG \end{array} \right\rangle = 130 - 500t$	of Materials, Vol. III (John Wiley & Sons,
Е	$\frac{1}{8}$ in. diameter steel bal	I		100	HRE	1965).
ME 45	63 Intro to Manufacturin	ng S Haran				86

ASU	Brinell Testi	ng
		 Indentation geometry in Brinell testing: (a) annealed metal (b) work-hardened metal (c) deformation of mild steel under a spherical indenter Note that the depth of the permanently deformed zone is about one order of magnitude larger than the depth of indentation. For a hardness test to be valid, this zone should be fully developed in the material. <i>Source</i>: M. C. Shaw and C. T. Yang.
ME 4563 Intro to Manufacturing	S Haran	89

Mohs Hardness Test

- Developed in 1822, this test is based on the capability of one material to scratch another
- The Mohs Hardness scale is based on a number from 1 to 10, with 1 for talc and 10 for diamond
- A material with a higher Mohs number will scratch one with a lower Mohs number
- Soft metals 2 to 3; Hardened steels around 6; Al Oxide (abrasive and cutting tools) 9

95

• Used mainly by minerologists

ME 4563 Intro to Manufacturing S Haran

Other Hardness Tests

- Scleroscope Portable instrument with a diamond tipped indenter (hammer)
 - dropped on the surface of specimen from a fixed height
 - hardness is determined from rebound of the indenter
 - indent is small; used for hardness of large objects
- Durometer Instrument used for hardness of rubbers, plastics, and similar soft elastic materials
 - indenter with constant load; depth measured after one second

97

hardness is inversely proportional to depth

ME 4563 Intro to Manufacturing S Haran

