

	TABLE 11.1		
A	Process	Advantages	Limitations
ASU	Sand	Almost any metal cast; no limit to size, shape or weight; low tooling cost.	Some finishing required; somewhat coarse finish; wide tolerances.
	Shell mold	Good dimensional accuracy and surface finish; high production rate.	Part size limited; expensive patterns and equipment required.
	Expendable pattern	Most metals cast with no limit to size; complex shapes	Patterns have low strength and can be costly for low quantities
Summary	Plaster mold	Intricate shapes; good dimensional accu- racy and finish; low porosity.	Limited to nonferrous metals; limited size and volume of production; mold making time relatively long.
Processes	Ceramic mold	Intricate shapes; close tolerance parts; good surface finish.	Limited size.
	Investment	Intricate shapes; excellent surface finish and accuracy; almost any metal cast.	Part size limited; expensive patterns, molds, and labor.
	Permanent mold	Good surface finish and dimensional accuracy; low porosity; high production rate.	High mold cost; limited shape and intricacy; not suitable for high-melting-point metals.
	Die	Excellent dimensional accuracy and surface finish; high production rate.	Die cost is high; part size limited; usually limited to nonferrous metals; long lead time.
ME 4563 Intro to Manuf. D	Centrifugal	Large cylindrical parts with good quality; high production rate.	Equipment is expensive; part shape limited.

ASU ASU	G	iener	al Ch	aract Proc	eristic esses	cs of (S	Castir	ng	
TABLE 1	12			1	1		1		
	Typical	Weig	ht (kg)	Typical surface				Section thic	kness (mm
Process	materials cast	Minimum	Maximum	finish (µm, R _a)	Porosity*	Shape complexity*	Dimensional accuracy*	Minimum	Maximum
Sand	All	0.05	No limit	5-25	4	1-2	3	3	No limit
Shell	All	0.05	100+	1-3	4	2-3	2	2	
Expendable mold									
pattern	All	0.05	No limit	5-20	4	1	2	2	No limit
Plaster	Nonferrous (Al, Mg, Zn,	0.05	50	1.2	2	1.2	2	1	
noid	All (High melting	0.05	50+	1-2		1-2		1	
Investment	pt.)	0.005	100+	1-3	3	1	1	1	75
Permanent mold	A11	0.5	300	2-3	2-3	3-4	1	2	50
D .	Nonferrous (Al, Mg, Zn,	0.05		1.0				0.5	10
Die Contrifuent	Cu)	<0.05	50	1-2	1-2	3-4	1	0.5	12
*Dalating an	All		5000+	2-10	1-2	3-4	3	2	100
Note : The	se ratings are on	orst. 1ly general; sig	nificant variatio	ons can occur, d	epending on th	e methods use	1.		
ME 456	3 Intro to Mar	nuf. Dr. S. H	laran						12

г

ÂSU		Hea	at Tra	nsfe	r	
	Com	parison	of Shape Volume	s with S	ame	
	Shape	Area	Volume	(V/A)	$(V/A)^2$	
	cube	6	1	0.167	0.028	
	cylinder	5.54	1	0.181	0.033	
	sphere	4.84	1	0.207	0.043	
		Use $\left(\frac{V}{A}\right)$	for riser $\binom{V}{riser} \left(\frac{V}{A}\right)$	design		
	 else ca – leads 	asting fr s to shrin	eezes be kage or po	fore rise prosity	r	
ME 4563 Intro to Manuf.	Dr. S. Haran					74

	Heat Transfer						
xan	nple						
	Material	Specific heat (J/g-ºC)	Density (g/cm³)	Thermal conductivity (W/m-°C)			
	Iron (solid)	0.7	7.9	73			
	Magnesium (solid)	1.07					
		Melting point (°C)	Latent heat of solidificaiton (J/g)	Specific heat (J/g-ºC)			
	Magnesium (liquid)	650	384	1.38			

	Heat Transfer	
Example		
,	 the parameters: 	
	• $\Delta H_f = 384 \text{ J/g} = 384 \text{ kJ/kg}$ • $\rho_c = 1.7 \text{ g/cm}^3 = 1700 \text{ kg/m}^3$ • $T_m = 650^{\circ}\text{C}$ • $T_o = 25^{\circ}\text{C}$ • $k_m = 73 \text{ W/m}^{\circ}\text{C}$ • $\rho_m = 7.9 \text{ g/cm}^3 = 7900 \text{ kg/m}^3$ • $c_m = 0.70 \text{ J/g}^{\circ}\text{C} = 0.70 \text{ kJ/kg}^{\circ}\text{C}$	
ME 4563 Intro to Manuf.	Dr. S. Haran	80

ASU	Heat Transfer	
Example .		
	 Now, we have to take into account cooling the liquid from (650 + 50)°C to 650°C So, the latent heat of solidification (ΔH_f) will be increased by c_pΔT For liquid magnesium -c_p = 1.38 J/g-°C - ΔT = 50°C So ΔH = ΔH_f + c_pΔT = 384 + 1.38 x 50 = 453 J/g 	
ME 4563 Intro to Man	uf. Dr. S. Haran	82

	Shri	nkage	
TABLE 5.1	Volumetric solidification	Metal or alloy	Volumetric solidification contraction (%)
Aluminum	6.6	70%Cu-30%Zn	4.5
Al-4.5%Cu	6.3	90%Cu-10%Al	4
Al-12%Si	3.8	Gray iron	Expansion to 2.5
Carbon steel	2.5-3	Magnesium	4.2
% carbon steel	4	White iron	4-5.5
Copper	4.9	Zinc	6.5
ource: Aner K. A. FI	inn.		

E	conor	nics E	-xamp	le
	Pro	ocess C	Costs	
Process	Sand Casting	Low Pressure	Permanent Mold	Die Casting
Material, C _m (\$)	1	1	1	1
Labor, C∟ (\$/hr)	20	20	20	20
Capital, C _C (\$)	0.9	4.4	700	3000
Rate, <u>n</u> (#/hr)	6.25	22	10	50

Cost*ProcessDieEquipmentLaborrate (Pc/I)SandLLL-M<20Shell-moldL-MM-HL-M<50PlasterL-MMM-H<10InvestmentM-HL-MH<1000Permanent moldMML-M<60DieHHL-M<200	TABLE 5.10				
ProcessDieEquipmentLaborrate (Pc/)SandLLL-M<20Shell-moldL-MM-HL-M<50PlasterL-MMM-H<10InvestmentM-HL-MH<1000Permanent moldMML-M<60DieHHL-M<200			Cost*		- Due due tieu
SandLLL-M<20	Process	Die	Equipment	Labor	rate (Pc/hr
Shell-moldL–MM-HL–M<50PlasterL–MMM–H<10	Sand	L	Ĺ	L–M	<20
PlasterL-MMM-H<10InvestmentM-HL-MH<1000	Shell-mold	L–M	M-H	L–M	<50
InvestmentM-HL-MH<1000Permanent moldMML-M<60	Plaster	L–M	М	M–H	<10
Permanent moldMML-M<60DieHHL-M<200	Investment	M–H	L-M	н	<1000
Die H H L–M <200	Permanent mold	М	Μ	L–M	<60
	Die	Н	Н	L–M	<200
Centrifugal M H L–M <50	Centrifugal	Μ	Н	L–M	<50
[*] L, low; M, medium; H, high.	* L, low; M, medium	ı; H, high.			

Р	roductio	on of Al	Auto Pa	rts
Main Characteristic	Casting Gravity ^A	Low-Pressure Die Casting ^B	High-Pressure Die Casting (Pores Free) ^C	Squeeze Casting ^D
Pouring/Filling Method	Ladle	Air pressure through stalk	High-speed and high-pressure injection by	Relatively low- speed and high-pressure
Filling Time (s)	10-30	10-30	1	10
Operating Pressure (atm.)	1	1+(0.2-0.5)	100-500	500-1,000
Cycle Time (min.)	5-10	5-10	1-2	2
Die/Mold Temperature	High	High	Low	Low-medium
Dimensional Accuracy	+	++	+++	+++
Design Availability	+++	++	+	+
Productivity	+	++	+++	+++
Quality	+	++	+-+++	+++
Cost	÷	+	+++	+++
Machining Required	Many	Many	Few	Few
Main Parts (other than wheels)	Intake manifold, cylinder block and head, piston	Cylinder block, cylinder head, suspension, member	Cylinder block, oil pan, cylinder head cover, transaxle case	Piston, disk- brake caliper, power steering toe control hub knuckle