

ASU	Sand Casting	
	Geometry	
	Dimensional Tolerances (+/-0.001 inches per inch) Too Low: 20" Easily Achieved: on 32" or higher	
	Surface Roughness (micro-inches) Too Low: 20 Easily Achieved: 500 or higher	
	Wall Thickness: Uniform Walls Preferred: Yes Max Wall Thickness (inches): 5 Min Wall Thickness with 5 inch span (inches): 0.25	
	Rounded Corners Preferred: Yes	
М	E 4563 Dr. S. Haran	23

ASU	Sand Castin	g	
	Cast Iron	100	
	Carbon Steel	100	
	Alloy Steel	100	
	Stainless Steel	100	
	Aluminum & Alloys	100	
	Copper & Alloys	100	
	Zinc & Alloys	80	
	Magnesium & Alloys	100	
	Titanium & Alloys	0	
	Nickel & Alloys	100	
	Refractory Metals	50	
	Thermoplastics	0	
	Thermosets	0	
	Ceramics	0	
	PhotoPolymers	0	

Pattern Material Characteristics									
TABLE 11.3									
			Rating ^a						
Characteristic	Wood	Aluminum	Steel	Plastic	Cast iron				
Machinability	Е	G	F	G	G				
Wear resistance	Р	G	Е	F	Е				
Strength	F	G	Е	G	G				
Weightb	E	G	Р	G	Р				
Repairability	E	Р	G	F	G				
Resistance to:									
Corrosionc	E	E	Р	Е	Р				
Swellingc	Р	E	Е	Е	Е				
aE, Excellent; G, goo	od; F, fair; P, po	oor.							
bAs a factor in operator fatigue.									
cBy water.									
Source : D.C. Ekey	and W.R. Win	ter, Introduction	to Foundry Te	chnology. New	v York.				
McGraw-Hill, 1958.									
ME 4563 Dr. S. Haran									

<section-header><image><image><image><image><text><text><text>

Propertie	perties and Typical Applications of Common Die-Casting Alloys				
TABLE 11.4					
Alloy	Ultimate tensile strength (MPa)	Yield strength (MPa)	Elongation in 50 mm (%)	Applications	
Aluminum 380 (3.5 Cu-8.5 Si)	320	160	2.5	Appliances, automotive components,	
13 (12 Si)	300	150	2.5	Complex shapes with thin walls, parts requiring strength at elevated temperatures	
Brass 858 (60 Cu)	380	200	15	Plumbing fiztures, lock hardware, bushings, ornamental castings	
Magnesium AZ91 B (9 Al-0.7 Zn)	230	160	3	Power tools, automotive parts, sporting goods	
Zinc No. 3 (4 Al)	280		10	Automotive parts, office equipment, household utensils, building hardware, toys	
5 (4 Al-1 Cu)	320		7	Appliances, automotive parts, building hardware, business equipment	
Source : Data from American Die Castin	g Institute				
ME 4563 Dr. S. Haran			annan n' a ta ban fiteratie (al casa da ma	154	

	SOME CASTING PROCES ADVANTAGES AND LIN	SSES, THEIR //ITATIONS
Die Casting	Excellent dimensional accuracy and surface finish; high production rate	Die cost is high; part size limited; usually limited to non ferrous metals; long lead time
Investment Casting	Intricate shapes;excellent surface finish and accuracy; almost any metal cast	Part size limited; expensive patterns, mold, and labor
Sand Casting	Almost any metal is cast; no limit to size, shape or weight; low tooling cost	Some finishing required; somewhat coarse finish; wide tolerances

Co	mparison of Cast SOME CASTING PROCES ADVANTAGES AND LIN	ing Process sses, their mitations	
Shell Mold Casting	Good dimensional accuracy and surface finish; high production rate	Part size limited; Expensive Patterns and equipment required	
Permanent Mold Casting	Good surface finish & dimensional accuracy; high prodn. rate; low porosity	High mold cost; limited shape & intricacy; not suitable for high melting point metals	
Expendable pattern	Almost any metal is cast; no limit to size; complex shapes;	Patterns have low strength; costly for small quantities	
ME 4563 Dr. S. Haran			165

Process	Die	Cost Fauir	o Labor	Production Rate (Pc/h
Sand	L	L	L-M	<20
Shell-mold	L-M	M-H	L-M	<50
Plaster	L-M	Μ	M-H	<10
Investment	M-H	L-M	Н	<1000
Permanent mold	Μ	Μ	L_M	<60
Die	Н	н	L-M	<200
Centrifugal	Μ	Н	L-M	<50
Kalpakijan n 347				