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Second-Order Systems: Vibrating Cantilever Beams 
 
Second Order Systems 
 
A second-order system is governed by the second-order ordinary differential equation  
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where y(t) is the response (output) of the system to an applied force F(t) (input), a0, a1, and a2 are 
system parameters.  By rewriting Eq. (10) as  
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the system parameters become  
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Consider the homogenous equation in which the applied force F(t) = 0 
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that has solutions of the form  
 

   yh t( )= Ceλt .                                                                                (16) 
 

Upon substitution into Eq. (15), we obtain the characteristic equation 
 

    λ
2 + 2ζωnλ + ωn

2 = 0.                                                                   (17) 
 

In general there are two roots, λ1 and λ2: 
 

    λ1,2 = −ζωn ±ω n ζ2 −1                                                                (18) 
 

The behavior of the system depends on whether these roots are real or complex, that is, whether 
the damping ratio, ζ, is less than, equal to, or greater than 1. 
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Under-damped Case: 0<ζ<1 
 
The general solution to the homogenous equation when the damping ratio is less than 1 is 
constructed from a linear combination of the two solutions with the two complex roots, 
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where C1 and C2 are determined from the initial conditions.  The above equation may be 
expressed in either of the two forms 
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These equations describe an exponentially decaying sinusoidal response with frequency 
 

    ωd = ωn 1−ζ2              damped natural frequency                     (22) 
 

and phase shift φ.  Thus, for zero damping ωd = ωn and the response is oscillatory, as shown if 
Fig. 2. 
 
 
Critically Damped Case: ζ=1 
 
When the damping ratio equals 1, there is only one real root of characteristic equation (17): λ1 = 
λ1 = -ζωn = -ωn.  For repeated roots the second solution is given by 
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The general solution to the homogenous equation is formed by adding the two independent 
solutions to obtain 
 

( ) ( )y t e C C th
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n
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where C1 and C2 are determined from the initial conditions.  Thus, for a critically damped 
system, the response is not oscillatory; the response approaches equilibrium as quickly as 
possible as shown in Fig. 2. 
 
Over-damped Case: ζ>1 
 
When the damping ratio is greater than one, the roots of the characteristic equation are real.  The 
general solution to the homogenous equation is 
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Thus, for large damping, the response is heavily damped, as shown in Fig. 2. 
 
Figure 2 shows the response for various values of the damping ratio, including under-damped 
(Eq. 21), critically damped (Eq. 24), and over-damped (Eq. 25) systems. 
 

kA

 
Figure 2: Response of a second-order system to a step input for different damping ratios.  
 
Response to a Step Input 
 
Consider a force instantaneously applied to a second-order system at time t = 0: 
 

F t( ) =
0, t < 0
A, t ≥ 0

⎧ 
⎨ 
⎩ 

                                                                     (26) 

 
The solution to Eq. (15) with this forcing function may be constructed by adding the solution to 
the homogenous equation to the particular solution, yp = kA and applying appropriate initial 
conditions on )0(y  and )0(y& . 
 
For the underdamped case, this will result in a solution of the form 

)sin( φωςω += − tCey d
tn                                             (27) 

that is an exponentially decaying sine wave. This form of the solution allows determination of 
the damping ratio from the system’s response to a step input by examination of the relative 
amplitude as the wave decays. Let yn be the amplitude of the nth peak, which occurs at time tn as 
in Figure 3.   

ζ=0 

Over-damped 

Under-damped 

Critically damped 

ωnt 

Output 
signal, y(t) 
 
             kA 



ME 3504 – Process Monitoring & Control        2nd Order Systems         11 03 05                Dr. Haran   

 4

 
 
 

 
Figure 3: An under damped second order system response showing the amplitude of the 
peaks for use in calculating damping ratio. 
 
Next we define the logarithmic decrement,δ, using the ratio of two peak heights separated by m 
successive cycles of period T  
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=δ                                                                      (28) 

At the peaks, the sine portion of the response equals 1, so by substitution of Equation (27) into 
(28) we have 

Tnςωδ =                                                                    (29) 
T is the period of the damped free vibration, which can be related to the period of the undamped 
free vibration (Eq. 22). Thus 

224 δπ
δς

+
=                                                                    (30) 

Once δ has been calculated from the peaks (Eq. 28), ς can be calculated fromδ . 
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Transient Response of a Cantilever Beam 
 
Design engineers must often consider mechanical vibrations in structures.  If a structure is 
excited at its resonance frequency and the damping is low, excessive vibrations in the structure 
can lead to catastrophic failure.  The natural frequencies of the structure, the damping in the 
structure, and the frequencies of likely excitations in service must be known in order to assure 
the reliability of the structure. 
 
In this part of the experiment we will study the dynamic behavior of a simple structure that may 
be modeled as a second-order system.  A cantilever beam is shown in Fig. 4, neglecting rotary 
inertia and shear effects.  We start with a full model, using a fourth-order partial differential 
equation, with both x and t as independent variables, and then reduce it to a second-order 
ordinary differential equation in t. The fourth-order differential equation for the deflection y(x,t) 
is given by  
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where E is Young’s modulus of the beam material, I is the area moment of inertia of the cross-
section, m is the mass per unit length, and q(x,t) is the force per unit length acting in the y 
direction. 
 
Consider the free vibration of the beam, q(x,t) = 0.  This partial differential equation may be 
solved by the method of separation of variables, 
 

)()(),( tWxYtxy =                                                                         (32) 
 

which leads to the two ordinary differential equations 
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where  
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By comparing Eq. (33) to Eq. (11), we see that the deflection is second-order in time with an 
undamped natural frequency ωn and there is no damping included in the model. 
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The natural deflection shapes (modes) of the beam are found by solving Eq. (34) subject to the 
appropriate boundary conditions.  The general solution is 
 

( )Y x C x C x C x C x= + + +1 2 3 4sin cos sinh coshβ β β β                  (36) 
 

where the constants C1, C2, C3, C4, and β are determined by imposing the boundary conditions 
for a cantilever beam, 
 

( )Y 0 0=                          no deflection at the clamped end,                      (37) 
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which leads to the condition 
 

cos coshβ βL L = −1.                                                                    (41) 
 

This transcendental equation must be solved numerically to determine allowable values of β.  
There are an infinite number of solutions corresponding to the possible modes of vibration, the 
first three of which are shown in Fig. 5.  Solving Eq. (34) for ωn gives the undamped natural 
frequencies of the cantilever beam, of which the first two modes are: 
 

4
2

1 )875.1(
mL
EI

n =ω   and  4
2

2 )694.4(
mL
EI

n =ω                             (42) 

Table

 
 Figure 4: Cantilever beam apparatus and model. 
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Figure 5: First three modes of vibration of a cantilever beam. 


