[image: image1.png]The Laplace transform

definition & examples

properties & formulas

— linearity
— the inverse Laplace transform
— time scaling

— exponential scaling

— time delay

— derivative

— integral

— multiplication by ¢

— convolution
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the Laplace transform converts integral and differential equations into
algebraic equations

this is like phasors, but

o applies to general signals, not just sinusoids

o handles non-steady-state conditions

allows us to analyze
o LCCODEs
o complicated circuits with sources, Ls, Rs, and Cs

o complicated systems with integrators, differentiators, gains




[image: image3.png]Complex numbers

complex number in Cartesian form: = = x + jy

 the real part of =

o y = 3z, the imaginary part of =

e j = /=T (engineering notation); i = /=1 is polite term in mixed
company

complex number in polar form: z = rei¢
o 7 is the modulus or magnitude of =
o ¢ is the angle or phase of =

o exp(j¢) = cos + jsing
complex exponential of z = z + jy:

¢ = eTHIY — Tl —





[image: image4.png]The Laplace transform

we'll be interested in signals defined for ¢ > 0

the Laplace transform of a signal (function) f is the function F' = L(f)
defined by

P(s) = / POt dt
8
for those s € C for which the integral makes sense

o Fis a complex-valued function of complex numbers

o s is called the (complex) frequency variable, with units sec™"; ¢ is called
the time variable (in sec); st is unitless

o for now, we assume f contains no impulses at £ = 0

common notation convention: lower case letter denotes signal; capital
letter denotes its Laplace transform, e.g., U denotes £(u), Vi, denotes
L(vin), ete.




[image: image5.png]Example

let's find Laplace transform of f(t) = ¢*

F(s):/ ot et dt:/ =gy — L
o o

provided we can say e(!=*)* — 0 as ¢ — oo, which is true for Rs > 1:

‘puﬂ)a‘ (Ss)t

‘e(lfm)a‘ LRt
—_—

o the integral defining " makes sense for all s € C with Rs > 1 (the
‘region of convergence’ of F)

® but the resulting formula for F' makes sense for all s € C except s = 1

we'll ignore these (sometimes important) details and just say that





[image: image6.png]More examples

constant: (or unit step) f(t) =1 (for t > 0)

provided we can say e~* — 0 as t — oo, which is true for s > 0 since

‘: oi(S9)t ‘pf(m,:‘
T

—(Rs)t

o the integral defining I makes sense for all s with Rs > 0

o but the resulting formula for I makes sense for all s except s = 0




[image: image7.png]sinusoid: first express f(t) = coswt as

1) = @72+ (/27

now we can find F as

) e‘*W“)'dH(l/z)/‘ el gy
o o

9+]

(valid for Rs > 0; final formula OK for s # +jw)




[image: image8.png]powers of t: f(t) =t" (n>1)
we'll integrate by parts, i.c., use
b

b b
/ Wt (8) dt = u(tyo(t) — / o (1) dt

with u(t) =", v'(t) =e™*, a=0,b= 00

/ A p———
sto

provided t"e~5 — 0 if t — oo, which is true for Rs > 0

F(s)f/ et dt =
o

G

applying the formula recusively, we obtain

n!

F(s) ey

valid for fs > 0; final formula OK for all s # 0




[image: image9.png]Impulses at ¢t =

if / contains impulses at ¢ = 0 we choose to include them in the integral
defining F"

- F(t)e==t dt

o0—

F(s)

(you can also choose to not include them, but this changes some formulas
we'll see & use)

example: impulse function, f =4

F(s

[7 S(tyetdt = e, _ =1

similarly for f = 6(%) we have

P(s) = /:o'(kl(n)ﬂ dt = (4)*%





[image: image10.png]Linearity

the Laplace transform is finear: if f and g are any signals, and a is any
scalar, we have

Llaf)=aF,  L(f+g)=F+G

homogeneity & superposition hold

example:

L£(36(t) —2¢") = 3L(3(t) — 2£L(e")





[image: image11.png]One-to-one property

the Laplace transform is one-to-one: if £(f) = L(g) then f = g
(well, almost; see below)

o ' determines f

o inverse Laplace transform £~ is well defined
(ot easy to show)

example (previous page):

) = 38(t) — 2"

in other words, the only function f such that

3s—5

F(s) =

is f(1) = 35(t) — 2¢t




[image: image12.png]what ‘almost’ means: if f and g differ only at a finite number of points
(where there aren’t impulses) then F' = G

examples:

o [ defined as

1t=2
f(t):{ 0 t#2
has F =0

o [ defined as

1 t>0

f(t):{ 1/2 t=0

has 7 = 1/s (same as unit step)




[image: image13.png]Inverse Laplace transform

in principle we can recover f from F' via

o+ico
1) = / F(s)e* ds

T2 Sy

where o is large enough that F(s) is defined for Rs > o

surprisingly, this formula isn't really useful!




[image: image14.png]Time scaling

define signal g by g(t) = f(at), where a > 0; then
G(s) = (1/a)F(s/a)

makes sense: times are scaled by a, frequencies by 1/a

let's check
G(s) /"  Hatest dt = (1/a) /0 ¥ KRS dr = (1) F(s)a)

where 7 = at

example: L(e') = 1/(s — 1) so

£ = /)




[image: image15.png]Exponential scaling

let f be a signal and a a scalar, and define g(t) = ¢ f(t); then

G(s) = F(s—a)

let's check:

G(s) /m eStet £ (1) dt /Om =) dt = F(s — a)

0

example: L(cost) = s/(s?+ 1), and hence

s+ 1 s+1

gty STL sl
Lleeost) = o T~ Sy as v 2





[image: image16.png]Time delay

et / be a signal and T > 0; define the signal g as

0 0<t<T
‘7<‘):{ -T) t>T

g is f, delayed by T seconds & ‘zero-padded’ up to T)

1t 9(t)





[image: image17.png]then we have G(s) = e~ F(s)

derivation:

Gs) = /" T ettty dat /T S et -1y at

- /m e+ f(7) dr

eTF(s)




[image: image18.png]example: let's find the Laplace transform of a rectangular pulse signal

f(t):{ 1 ifa<t<b

0 otherwise
where 0 <a <b

we can write [ as [ = fi — f, where

no-{g 120 mo-{y %

i.c., [ is a unit step delayed a seconds, minus a unit step delayed b seconds

hence

F(s) =

(can check by direct integration)




[image: image19.png]Derivative

if signal [ is continuous at ¢ = 0, then
L(f) = sF(s) ~ £(0)

o time-domain differentiation becomes multiplication by frequency
variable s (as with phasors)

o plus a term that includes initial condition (i.c., —f(0))

higher-order derivatives: applying derivative formula twice yields

UM = L) - F(0)
s(sF(s) — £(0)) — f'(0)
= §F(s) — sf(0) - f'(0)

similar formulas hold for £(f(*))




[image: image20.png]examples

o f(t) = ¢!, 50 /(1) = ¢! and

L(f)=L(f) =

using the formula, £(f') = « — 1, which is the same

o sinwt = —L £ coswt, so

1
Lisinwt) = ——
>

o [ is unit ramp, so /" is unit step

L(f)=s (%) —0=1/s




[image: image21.png]derivation of derivative formula: start from the defining integral

G(s) = /"m f(etdt

integration by parts yields

G = ol [T e a

=l (e~ 1(0) 4 5F(s)

for Rs large enough the limit is zero, and we recover the formula

G(s) = sF(s) - £(0)




[image: image22.png]derivative formula for discontinuous functions

if signal / is discontinuous at ¢ = 0, then

L(f') = sF(s) = f(0=)

example: [ is unit step, so /() = 6(1)

L(f’):s(%)—ll:l




[image: image23.png]Example: RC circuit
10

u 1F

o capacitor is uncharged at ¢ =0, i.c., y(0) = 0

® u(t) is a unit step

from last lecture,
y'(6) +y(t) = u(t)

take Laplace transform, term by term:
SY(s)+ Y(s) = 1/s

(using y(0) = 0 and U(s) = 1/s)




[image: image24.png]solve for Y'(s) (just algebra!) to get

(check!)

therefore we have

)= L7(1/9) ~ L7/ (s+ 1) =1~

Laplace transform turned a differential equation into an algebraic equation
(more on this later)




[image: image25.png]Integral

let g be the running integral of a signal f, i.c.,

o0 = [ 16 ar

then .
G(s) = TF(s)

i.e., time-domain integral becomes division by frequency variable s
example: f =4, so F(s) = 1; g is the unit step function
G(s)=1/s

example: f is unit step function, so F'(s) = 1/s; g is the unit ramp
function (g(t) = t for t > 0),

G(s) = 1/s?




[image: image26.png]derivation of integral formula:

G(s) = /:" (/;"f(r) 47) e~tdt = /:“ T;)f(?)é”“ dr dt

here we integrate horizontally first over the triangle 0 < 7 < ¢
t

-

let's switch the order, i.c., integrate vertically first:

/T:)f(f) (lje"' dt) i

/ :) F) /) dr
F(s)/s

Gls) = / : : Fr)e dt dr




[image: image27.png]Multiplication by ¢

let f be a signal and define
g(t) = tf(1)

then we have

Gs) = ~F'(s)

to verify formula, just differentiate both sides of

P(s) = /me’”f(ﬁ) dt

0

with respect to s to get

F'(s) = /Om(—t)e’“”f(t) dt




[image: image28.png]examples

. S0 = g0 =

d 1 1
Tdss+ 1 (s+1)2

1 2

S5+ 1) (s+1)°

o in general,

(k- 1)!
e





[image: image29.png]Convolution

the convolution of signals f and g, denoted h = f # g, is the signal
.
w) = [t ar
,

:
o same as A(t) = / F(t — 7)g(r) dr; in other words,
o
Jrg=gxf
o (very great) importance will soon become clear
in terms of Laplace transforms:

H(s) = F(s)G(s)

Laplace transform turns convolution into muitiplication




[image: image30.png]let's show that L(f * g) = F(s)G(s):

[” (/ f(T)qfff)dT> at
/H]/r . et f(r)g(t — ) dr dt

where we integrate over the triangle 0 < 7 < ¢

H(s)

o change order of integration: H(s) = / et f(r)g(t — 7) dt dT
=0 Jt=r
o change variable ¢ to T 7; df = dt; region of integration becomes
7>0,1>0
1) = [T [T gl dar
7=0JT=0

([ emsmrar) ([ o m)

F(s)G(s)




[image: image31.png]examples
o f=6, F(s) = 1, gives

H(s) = G(s),
which is consistent with

JRETCE ST
o f(t) =1, F(s) = e=T/s, gives
H(s) = G(s)/s
which is consistent with

n(t) :/“t_q@) dr




[image: image32.png]Finding the Laplace transform

you should know the Laplace transforms of some basic signals, ..,

o unit step (F(s) = 1/s), impulse function (F(s) = 1)
o exponential: £(c) = 1/(s - a)

o sinusoids L(coswt) = 5/(s” + w?), L(sinwt) = w/(s* + w?)

these, combined with a table of Laplace transforms and the properties
given above (linearity, scaling, . . . ) will get you pretty far

and of course you can always integrate, using the defining formula

/0“u fye =tar ...

F(s)
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