

2nd Order Response

- 1. Duration of transient response controlled by $\zeta \omega_n$. For $\zeta > 1$, the response $y_{\infty} \rightarrow KA$ at $t \rightarrow \infty$, but for larger $\zeta \omega_n$ the response is faster.
- 2. Time required to reach 90% of step input Au(t)=KA-y₀ is called rise time. Rise time is decreased by decreasing the damping ratio ζ .
- 3. Time to reach $\pm 10\%$ of steady state is called settling time for oscillatory systems.

<u>Note</u>: a faster rise may not necessarily reach a steady state faster if the oscillations are large.

Multiple-Function Inputs

• When models are used that are linear, ordinary differential equations subjected to inputs that are linear in terms of the dependent variable, the principle of superposition of linear systems will apply to the solution of these equations.

Principle of Superposition

• The theory of superposition states that a linear combination of input signals applied to a linear measurement system produces an output signal that is simply the linear addition of the separate output signals that would result if each input term had been applied separately.

Principle of Superposition

• The forcing function of a form:

$$F(t) = A_0 + \sum_{i=1}^{\infty} (A_i \sin \omega_i t)$$

is applied to a system, then the combined steady response will have the form:

57

$$KA_0 + \sum_{n=1} B(\omega_i) \sin[\omega_i t + \phi(\omega_i)]$$

Where $B(\omega_i) = KA_i M(\omega_i)$

Coupled Systems

- Such measurement systems will have an output response to the original input signal that is some combination of the individual instrument responses to the input.
- The system concepts of zero-, first-, and secondorder systems studied previously can be used for a case-by-case study of the coupled measurement system.
- This is done by considering the input to each stage of the measurement system as the output of the previous stage.

Coupled Systems

• The previous slide depicts a measurement system consisting of H interconnected devices, j = 1, 2, ..., H, each device described by a linear system model.

Coupled Systems

- The overall transfer function of the combined system, G(s), will be the product of the transfer functions of each of the individual devices, G_j(s), such that: KG(s) = K₁G₁(s)K₂G₂(s)...K_HG_H(s)
- The overall system static sensitivity is described by:
 - $\mathbf{K} = \mathbf{K}_1 \mathbf{K}_2 \mathbf{K}_3 \dots \mathbf{K}_H$

Mean and Variance

• No matter which distribution you have, the mean value (central tendency) is given by

$$x' = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x(t)$$

• And the variance is

$$\sigma^{2} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left[x(t) - x' \right]^{2} dt$$

• For infinite discrete series, these are

$$x' = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \sigma^2 = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} [x_i - x']^2$$

Mean and Variance

• A fundamental difficulty arises in the definitions given by the equations earlier, in that they assume an infinite number of measurements

• What if the data set is finite ?

• We will look into the connection between probability and statistics and then into the practical treatment of finite sets of data

Probability & Statistics

- Probability theory examines the properties of random variables, using the ideas of random variables, probability and probability distributions.
- Statistical measurement theory (and practice) uses probability theory to answer concrete questions about accuracy limits, whether two samples belong to the same population, etc.
- "The analysis of data inevitably involves some trafficking with the field of statistics, that gray area which is not quite a branch of mathematics – and just as surely not quite a branch of science." [H. Press et. al., <u>Numerical Recipes</u>, Cambridge Univ. Press, Chap. 14]

Probability & Statistics
To find the interval in which the measurand value will fall under given experimental conditions we need to sort out few background ideas first
A good start is to clarify the relationship between probability theory and statistical measurement theory

76

1.2

	Exal	npie	<u>. Co</u>	UNSIC		ne v	vina	spe	<u>ea a</u>	<u>ala.</u>	
Sample #	Wind speed data	Running average	Sample #	Wind speed data	Running average	Sample #	Wind speed data	Running average	Sample #	Wind speed data	Running
1	11.5365	11.5365	26	16.1416	12.6104	51	16.9181	12.5474	76	7.1871	12.0829
2	9.2332	10.3849	27	12.9392	12.6226	52	15.3221	12.6008	77	11.9689	12.0814
3	12.9846	11.2515	28	14.5035	12.6898	53	12.6510	12.6017	78	15.3700	12.1236
4	18.7957	13.1375	29	7.3669	12.5062	54	5.3269	12.4670	79	8.4892	12.0776
5	8.5051	12.2110	30	11.1278	12.4603	55	11.8757	12.4563	80	10.8533	12.0623
6	12.3544	12.2349	31	8.6197	12.3364	56	14.2836	12.4889	81	15.8850	12.1095
7	15.8414	12.7501	32	7.4469	12.1836	57	11.2585	12.4673	82	11.4947	12.1020
8	8.7258	12.2471	33	10.4165	12.1300	58	13.1818	12.4796	83	7.3016	12.0441
9	11.9886	12.2184	34	10.9251	12.0946	59	7.8915	12.4019	84	13.7059	12.0639
10	14.5874	12.4553	35	14.0136	12.1494	60	6.4132	12.3020	85	7.8833	12.0147
11	11.0471	12.3272	36	14.2179	12.2069	61	12.5804	12.3066	86	13.0810	12.0271
12	13.6365	12.4363	37	16.3352	12.3185	62	17.2129	12.3857	87	11.4623	12.0206
13	12.3296	12.4281	38	17.0296	12.4424	63	14.0680	12.4124	88	15.0626	12.0552
14	9.1848	12.1965	39	11.4896	12.4180	64	7.0001	12.3279	89	10.4630	12.0373
15	11.6655	12.1611	40	13.3769	12.4420	65	8.2330	12.2649	90	8.6416	11.9996
16	14.7416	12.3224	41	10.3996	12.3922	66	13.4989	12.2836	91	12.3941	12.0039
17	11.4189	12.2692	42	13.3815	12.4157	67	11.7140	12.2751	92	12.4995	12.0093
18	7.3487	11.9958	43	11.3415	12.3907	68	13.1620	12.2881	93	9.9212	11.9869
19	13.5740	12.0789	44	10.2202	12.3414	69	14.5516	12.3209	94	15.9513	12.0290
20	16.6338	12.3067	45	15.3365	12.4080	70	6.4819	12.2375	95	14.1887	12.0518
21	14.6856	12.4199	46	15.4909	12.4750	71	10.1296	12.2078	96	10.7504	12.0382
22	13.7430	12.4801	47	6.2576	12.3427	72	10.8048	12.1883	97	12.5755	12.0437
23	18.4066	12.7378	48	16.7661	12.4348	73	12.8268	12.1971	98	10.0896	12.0238
24	6.2973	12.4694	49	15.1833	12.4909	74	10.4948	12.1741	99	14.0007	12.0438
25	12.4632	12.4692	50	10.9444	12.4600	75	10.2319	12.1482	100	16.6868	12.0902

			1								
Sample #	Value	Running average									
1	3	3.0000	26	3	4.6538	51	0	4.8431	76	6	4.8158
2	1	2.0000	27	8	4.7778	52	5	4.8462	77	2	4.7792
3	4	2.6667	28	3	4.7143	53	8	4.9057	78	0	4.7179
4	1	2.2500	29	2	4.6207	54	2	4.8519	79	8	4.7595
5	5	2.8000	30	7	4.7000	55	0	4.7636	80	9	4.8125
6	9	3.8333	31	9	4.8387	56	9	4.8393	81	9	4.8642
7	2	3.5714	32	5	4.8438	57	7	4.8772	82	8	4.9024
8	6	3.8750	33	0	4.6970	58	4	4.8621	83	6	4.9157
9	5	4.0000	34	2	4.6176	59	9	4.9322	84	2	4.8810
10	3	3.9000	35	8	4.7143	60	4	4.9167	85	8	4.9176
11	5	4.0000	36	8	4.8056	61	4	4.9016	86	0	4.8605
12	8	4.3333	37	4	4.7838	62	5	4.9032	87	3	4.8391
13	9	4.6923	38	1	4.6842	63	9	4.9683	88	4	4.8295
14	7	4.8571	39	9	4.7949	64	2	4.9219	89	8	4.8652
15	9	5.1333	40	7	4.8500	65	3	4.8923	90	2	4.8333
16	3	5.0000	41	1	4.7561	66	0	4.8182	91	5	4.8352
17	2	4.8235	42	6	4.7857	67	7	4.8507	92	3	4.8152
18	3	4.7222	43	9	4.8837	68	8	4.8971	93	4	4.8065
19	8	4.8947	44	3	4.8409	69	1	4.8406	94	2	4.7766
20	4	4.8500	45	9	4.9333	70	6	4.8571	95	1	4.7368
21	6	4.9048	46	9	5.0217	71	4	4.8451	96	1	4.6979
22	2	4.7727	47	3	4.9787	72	0	4.7778	97	7	4.7216
23	6	4.8261	48	7	5.0208	73	6	4.7945	98	0	4.6735
24	4	4.7917	49	5	5.0204	74	2	4.7568	99	6	4.6869
25	3	4.7200	50	1	4.9400	75	8	4.8000	100	7	4.7100

Infinite Statistics If we know what type of distribution we have and we know x' and σ, then we know p(x) and we could perform the integral. We can make the integral easier by transforming the variables a little bit. Make z₁ =(x₁-x')/ σ and β = (x - x')/ σ. Put in the normal distribution for P(x) and get:

$$P(-z_1 \le \beta \le z_1) = \frac{1}{(2\pi)^{1/2}} \int_{-z_1}^{z_1} e^{-\beta^2/2} d\beta$$

Infinite Statistics

$$P(-z_1 \le \beta \le z_1) = \frac{1}{(2\pi)^{1/2}} \int_{-z_1}^{z_1} e^{-\beta^2/2} d\beta$$

• Since the gaussian distribution is symmetric about *x*', we can write this as

$$P(-z_1 \le \beta \le z_1) = 2 \left[\frac{1}{(2\pi)^{1/2}} \int_{0}^{z_1} e^{-\beta^2/2} d\beta \right]$$

• The term in the brackets is called the error function. You have probably seen it before, you certainly will again, and now you know why they call it that.

105

Probability Density Function and **Probability** $p(x) = \frac{1}{\sigma(2\pi)^{1/2}} \exp(-\frac{1}{\sigma(2\pi)^{1/2}})$ $P(x' - \delta x \le x \le x' + \delta x) = \int_{x' - \delta x}^{x' - \delta x} p(x) \, dx$ p(x)=dP/dx2 (4.10) $dx = \sigma d\beta$ 4.9 becomes $\mathcal{P}(-z_1 \leq \beta \leq z_1) = \frac{1}{(2\pi)^{1/2}} \int_{-\pi}^{\pi} e^{-\beta^2/2} d\beta$ (4.11) al distribution, p(x) is symmetrical about x', one can write $\frac{1}{(2\pi)^{1/2}} \int_{-\pi}^{\pi} e^{-\beta^2/2} d\beta = 2 \left[\frac{1}{(2\pi)^{1/2}} \int_{0}^{\pi} e^{-\beta^2/2} d\beta \right]$ (4.12) $\beta = (x - x')/\sigma = \dim'$ less deviation For x=x', $\beta=\theta$ 106

	Fun	ctions			
	Tab	le 4 2	•		
	100				
			1	(^z 1	
ntegral So	lutions fo	$r \ p(z_1) =$	$\frac{1}{(2\pi)^{1/2}}$	$e^{-\beta^2/2}$	$^{2}d\beta$
is second			(211)	<i>J</i> ₀	
0.00	0.01	0.02	0.03	0.04	0.05
Sales -					0.00
0.0000	0.0040	0.0080	0.0120	0.0160	0.0199
0.0398	0.0438	0.0478	0.0517	0.0557	0.0596
0.0793	0.0832	0.0871	0.0910	0.0948	0.098
0.1179	0.1217	0.1255	0.1293	0.1331	0.1368
0.1554	0.1591	0.1628	0.1664	0.1700	0.1730
0.1915	0.1950	0.1985	0.2019	0.2054	0 208
				0.2001	0.2000
	0.00 0.0000 0.0398 0.0793 0.1179 0.1554 0.1915	Hum Tab Integral Solutions for 0.00 0.01 0.0000 0.0040 0.0398 0.0438 0.0793 0.0832 0.1179 0.1217 0.1554 0.1591 0.1915 0.1950	Functions Table 4.2Table 4.2Integral Solutions for $p(z_1) =$ 0.000.010.020.0000.00400.00800.03980.04380.04780.07930.08320.08710.11790.12170.12550.15540.15910.16280.19150.19500.1985	Hunctions Table 4.2 Integral Solutions for $p(z_1) = \frac{1}{(2\pi)^{1/2}}$ 0.00 0.01 0.02 0.03 0.0000 0.0040 0.0080 0.0120 0.0398 0.0438 0.0478 0.0517 0.0793 0.0832 0.0871 0.0910 0.1179 0.1217 0.1255 0.1293 0.1554 0.1591 0.1628 0.1664 0.1915 0.1950 0.1985 0.2019	Functions Table 4.2Integral Solutions for $p(z_1) = \frac{1}{(2\pi)^{1/2}} \int_0^{z_1} e^{-\beta^2/t}$ 0.000.010.020.030.040.0000.00400.00800.01200.01600.03980.04380.04780.05170.05570.07930.08320.08710.09100.09480.11790.12170.12550.12930.13310.15540.15910.16280.16640.17000.19150.19500.19850.20190.2054

	No	orma	al Er	ror	Fun	ctio	n Ta	able		
Table 4.3 Pro	bability V	/alues for	Normal	Error Fu	nction					
One-Sided In	tegral Sol	utions fo	$p(z_1) =$	$\frac{1}{(2\pi)^{1/2}}$	$\int_0^{z_1} e^{-\beta^2/2}$	$^{2}d\beta$				
$z_1 = \frac{x_1 - x'}{\sigma}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
17	0.4554	0.4564	0 4572	0 4592	0.4501	0.4500	0.4609	0.4616	0 4625	0 4622
										112

Table 4.	4 Student-t Distribu	tion	and the second second	
v	150	t ₉₀	<i>t</i> 95	<i>t</i> 99
1	1.000	6.314	12.706	63.657
2	0.816	2.920	4.303	9.925
3	0.765	2.353	3.182	5.841
4	0.741	2.132	2.770	4.604
5	0.727	2.015	2.571	4.032
6	0.718	1.943	2.447	3.707
7	0.711	1.895	2.365	3.499
8	0.706	1.860	2.306	3.355
9	0.703	1.833	2.262	3.25
10	0.700	1.812	2.228	3.16
11	0.697	1.796	2.201	3.100
12	0.695	1.782	2.179	3.05
13	0.694	1.771	2.160	3.012
14	0.692	1.761	2.145	2.97
15	0.691	1.753	2.131	2.94
16	0.690	1.746	2.120	2 921
17	0.689	1.740	2.110	2 89
18	0.688	1.734	2.101	2.878
19	0.688	1.729	2.093	2.861
20	0.687	1.725	2.086	2.00
21	0.686	1.721	2.080	2.04
30	0.683	1.697	2.000	2.03
40	0.681	1.684	2 021	2.750
50	0.680	1.679	2 010	2.704
60	0.679	1.671	2000	2.0/9
x	0.674	1.645	1960	2.000

If we know the true standard deviation

• We express the range of possible measurand values as a *confidence interval*, given at a certain *confidence level*:

$$x' = \overline{x} \pm u_x \qquad (P\%)$$

If we know the true standard deviation, σ, then

$$x' = \overline{x} \pm z_{50} \sigma_{\overline{x}} = \overline{x} \pm 0.67 \sigma_{\overline{x}} \quad (50\%)$$

$$x' = x \pm z_{95} \sigma_{\bar{x}} = x \pm 1.96 \sigma_{\bar{x}} \qquad (95\%)$$

$$x' = x \pm z_{99}\sigma_{\bar{x}} = x \pm 2.58\sigma_{\bar{x}} \quad (99\%)$$

 z_{95} is the value of z for which $P(0 < z \le z_{95}) = \frac{0.95}{2} = 0.475$

• The probability that the i th measured value of x will have a value between x' $\pm z_1 \sigma$, is 2P(z₁) x 100 = P%

Chi-Squared Distribution (ki-squared)

If we were to repeat our *N* measurements a few times, we would compute a different estimate of the standard deviation S_x each time. (Remember that we said the same thing about the mean). There is a distribution (pdf) of the variance of measurements of a gaussian (normal) process, and it is called <u>Chi-Squared</u>.

	Values for γ^2										
	2	2	v	arues	101 /	να.					
	X0.99	X0.975	X0.95	X0.90	X _{0.50}	X _{0.05}	X0.025	X0.00			
1	0.000	0.000	0.000	0.016	0.455	3.84	5.02	6.6			
2	0.020	0.051	0.103	0.211	1.39	5.99	7.38	9.2			
3	0.115	0.216	0.352	0.584	2.37	7.81	9.35	11.3			
4	0.297	0.484	0.711	1.06	3.36	9.49	11.1	13.3			
5	0.554	0.831	1.15	1.61	4.35	11.1	12.8	15.1			
5	0.872	1.24	1.64	2.20	5.35	12.6	14.4	16.8			
7	1.24	1.69	2.17	2.83	6.35	14.1	16.0	18.5			
3	1.65	2.18	2.73	3.49	7.34	15.5	17.5	20.1			
)	2.09	2.70	3.33	4.17	8.34	16.9	19.0	21.7			
)	2.56	3.25	3.94	4.78	9.34	18.3	20.5	23.2			
.1	3.05	3.82	4.57	5.58	10.3	19.7	21.9	24.7			
2	3.57	4.40	5.23	6.30	11.3	21.0	23.3	26.2			
.3	4.11	5.01	5.89	7.04	12.3	22.4	24.7	27.7			
4	4.66	5.63	6.57	7.79	13.3	23.7	26.1	29.1			
5	5.23	6.26	7.26	8.55	14.3	25.0	27.5	30.6			
6	5.81	6.91	7.96	9.31	15.3	26.3	28.8	32.0			
7	6.41	7.56	8.67	10.1	16.3	27.6	30.2	33.4			
8	7.01	8.23	9.39	10.9	17.3	28.9	31.5	34.8			
.9	7.63	8.91	10.1	11.7	18.3	30.1	32.9	36.2			
:0	8.26	9.59	10.9	12.4	19.3	31.4	34.2	37.6			
0	15.0	16.8	18.5	20.6	29.3	43.8	47.0	50.9			
0	37.5	40.5	43.2	46.5	59.3	79.1	83.3	88.4			

143

Least-Squares Regression

Generally, we will assume that our data represents some function y = f(x; a, b, ...) where *a* and *b* are the coefficients to be determined. This technique tries to minimize (Least) the square of the difference (squares) between the data and the assumed function. It will calculate the values of *a*, *b*,.... that do this. If the assumed function is linear in *a*, *b*,, then this method can do it in one shot. If not, it will iterate starting with initial guesses for all of the parameters.

I am not interested in you understanding the nuts and bolts of this technique. You can get the subroutines from Numerical Recipes or use a graphing package like Kaleidagraph. I do want you to understand the application and limits of the technique.

Number of Measurements Required

Again, the books discussion on this topic is confusing since it uses a t-estimator. There is nothing wrong with this approach, but it is perhaps easier to understand using infinite statistics. Say we have a measurement of some random data, and we want to know its mean with an error smaller than 5%. If we have some estimate of its standard deviation, then we know that Γ

$$S_{\overline{x}} = \frac{S_x}{N^{1/2}}$$

The above statement says that we want $S_{\overline{x}}$ to be less than 5% of \overline{x}

$$0.05 = S_{\overline{x}} / \overline{x} = \frac{S_x}{\overline{x}N^{1/2}}$$
$$N = \left(\frac{S_x}{0.05 \,\overline{x}}\right)^2$$
146

