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This document is intended to introduce the reader
with a brief introduction to uncertainty analysis and
the propagation of uncertainties through an algo-
rithm to a result. Uncertainty analysis is not a topic
that is generally covered in Rigid Body Dynamics
courses, which is unfortunate because it is impor-
tant for engineers to assess the quality of their pre-
dictions. The question that every engineer should
ask him, or herself, when performing a calculation
is: “Assuming my model is correct, and given the
uncertainty in my measurements, what is the un-
certainty in my prediction?”

Definitions:

It is important that we all get started off on the
same footing. With that in mind, I’ve included a
few “definitions”.

• Accuracy: The deviation of a reading from a
known input, generally expressed as a percent-
age of the full scale reading. For example,
imagine a meter stick has a full scale range of
1000mm and an accuracy of ±5mm, or ±0.5%,
over that range. This uncertainty in the accu-
racy could be related to a number of things,
but one possibility is the material that the me-
ter stick is constructed from. Although it’s un-
likely, a wooden may fluctuate in length by that
much with changes in the humidity.

• Precision: The ability of an instrument to re-
produce certain readings with a given accuracy.
For example, a known 100V potential is to be
measured with a particular voltmeter. The
voltmeter returns: 103V , 104V , 105V , 103V ,
and 105V . The accuracy of the voltmeter is
roughly 5% but the precision is ±1%.

• Least Count: The smallest difference between
the demarkations on the scale of an instrument.
For example, imagine a meter stick where the
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smallest demarkations are spaced 1cm apart.
The least count is 1cm and consequently, the
resolution of this meter stick would be ±5mm,
or ±1/2 of the least count.

Uncertainty Analysis

Uncertainty analysis is the process of systematically
quantifying those estimates. Whenever we make
a measurement there is an associated uncertainty:
x′ = x± ux(P%). Uncertainty analysis provides us
with the tools to estimate ux for a desired probabil-
ity level (P%), i.e., there is a 95% probability that
the measurement will fall within the range specified
by x and ±ux.

Elemental Uncertainties

Each element of error present within a measurement
will combine with other errors to increase the uncer-
tainty of a measurement. Often, we are interested
in measuring x where x is subject to k sources, or
elements, of error, ej , for j = 1, 2, · · · , k. The Root-
Sum-Squares (RSS) method may be used to esti-
mate the uncertainty, ux, in the measured quantity
x.

ux = ±
√

e2
1 + e2

2 + · · ·+ e2
k = ±

√√√√ k∑
j=1

e2
j (1)

One of the common, and significant, sources of un-
certainty is associated with the resolution, or least
count, of an instrument. This is referred to as in-
terpolation uncertainty. A general rule of thumb
is to assign a numerical value to the interpolation
uncertainty, uo, of ±1/2 the instrument resolution
at a probability of 95%, i.e., uo = ±1/2 resolution
(95%). The (95%) probability implies that there is
a 20 to 1, or a 5%, chance that a value will exceed
the interval uo.
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Problem: Example 1

An automobile speedometer is graduated in 5mph
increments and has an accuracy rated to be within
±4%. Estimate the uncertainty in the indicated
speed at 60mph.

Solution:

The uncertainty in the speed, us, is a function of
the interpolation uncertainty in the speedometer,
u◦, and the instrument uncertainty, uc.

us = ±
√

u2
◦ + u2

c (2)

The interpolation uncertainty, u◦, is related to the
least count of the instrument. The interpolation
uncertainty of the speedometer in our example is
±1/2 the least count or ±2.5mph. On the other
hand, the instrument uncertainty in this problem
is related to the accuracy of the speedometer, and
can probably be traced back to the manufacturing
tolerances used in the construction of the device.

us = ±
√

(2.5)2 + (0.04× 60)2) (3)

After plugging the appropriate values into equation
2 and solving, we find the uncertainty in the speed
to be:

us = ±3.5mph (4)

Propagation of Uncertainties

Often functional relationships are used in conjunc-
tion with measured variables to determine a variable
of interest. For example, the uncertainty associated
with estimates of kinetic energy, T , is a function of
the density of the body, ρ, the volume of the body,
ϑ, and the velocity of the body, V :

CL = f(ρ, ϑ, V ) (5)

However, the value and uncertainty of T is more sen-
sitive to changes in some of these quantities, such as
the velocity, V , than others. The remainder of this
section will discuss how we account for the sensitiv-
ity of an equation to changes in different variables.

Single-Variable Problems

The true value of y depends on the sensitivity in the
measurement of x.

y ± δy = f(x± tSx) (6)

Performing a Taylor Series Expansion on equation 6,
yields:

y±δy = f(x)±

[(dy

dx

)
x=x

tSx+
1
2

(d2y

dx2

)
x=x

tSx+· · ·

]
(7)

Assume that for small changes a linear approxima-
tion is valid:

y ± δy = f(x)±
(dy

dx

)
x=x

tSx. (8)

By inspection we can split this equation according
to the measurement and it’s associated uncertainty
and we can see that in general, the uncertainty in y,
uy, is proportional to the uncertainty in x, ux, as:

uy =
(dy

dx

)
x=x

ux (9)

This concept is demostrated in Figure 1, where the
uncertainty in y is clearly related to the uncertainty
in x and the slope of line related x to y.

Figure 1: Relationship between the uncertainty of a
measured variable, x ± tSx, and the uncertainty in
a calculated quantity, y ± δy. – From Figliola and
Beasley (2000)[1]

Multi-Variable Problems

To propagate uncertainties through equations con-
taining multiple variables, we’ll combine the RSS
approach used to combine elemental uncertainties
with the approach described for single variable prob-
lems in the last section. Begin by letting R be the
result determined from L independent variables, xi,
such that, R = f1(x1, x2, · · · , xL). If we assign the
uncertainties for each of the independent variables
at the same probablility level, then the uncertainty
in R, can be defined in functional form as:

ur = f2(ux1 + ux2 + · · ·uxL
) (10)

which then yields an equation for the multi variable
problem of the form:

ur = ±

√√√√ L∑
i=1

(
∂R

∂xi

∣∣∣∣∣
x=xi

uxi

)2

(11)
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To demonstrate the application of uncertainty anal-
ysis to the multi-variable problems a pair of exam-
ples are provided.

Problem: Example 2

Estimate the uncertainty in the density of a
cylinderical bar given the mass, m = 4.5 ± 0.1lbm,
the diameter, d = 4 ± 0.05in., and the length,
l = 6± 0.005in.

Solution:

The density, ρ, is defined as:

ρ =
m

v
(12)

where the volume, v, is:

v =
1
4
πd2l (13)

Substituting Equation 13 into Equation 12:

ρ =
4m

πd2l
(14)

Applying equation 11 to equation 14:

uρ =

√√√√( ∂ρ

∂m
um

)2

+

(
∂ρ

∂d
ud

)2

+

(
∂ρ

∂l
ul

)2

(15)
Evaluating each of the partial derivatives:

uρ =

√√√√( 4
πd2l

um

)2

+

(
−8m

πd3l
ud

)2

+

(
4m

πd2l2
ul

)2

(16)
Inserting the measured values and their associated
uncertainties into Equation 16 and evaluating Equa-
tion ?? yields:

ρ± uρ = 103.13± 3.45
lbm

ft3
(17)

Problem: Example 3[2]

The chipping machine is designed to eject wood
chips at vo = 25 ± 0.1ft/s. If the exit nozzle
is square with 2in. on each side and oriented at
θ = 30◦ ± 2.5◦ from the horizontal, determine how
high, h, the chips strike the pile if they land on the
pile 20ft from the exit. Note: the distance from
the ground to the centerline of the nozzle exit is
4ft± 1in.

Solution:

We can begin by breaking the exit velocity, v0, of
the wood chips into horizontal, v0x

, and vertical,
v0y , components.

v0x = v0 cos(θ) (18)

v0y
= v0 sin(θ) (19)

We can now write out an equation to describe the
horizontal motion. Notice that, in the absence of an
aerodynamic drag force, there is no acceleration in
the x direction.

xA = x0 + v0x
t0A

(20)

The time required for the wood chips to travel the
20ft can be found by rearranging equation 20 as
follows:

t0A
=

xA − x0

v0x

. (21)

To describe the vertical motion of the wood chips,
we need to include an acceleration term. The ac-
celeration in this case is assumed to be ac = −g =
−32.2ft/s.

h = yA = y0 + v0y
t0A

+
1
2
act

2
0A

(22)

We can now substitute equations 18, 19, and 21 into
equation 23 to obtain an equation that relates the
height of the chip pile to the exit conditions of the
chipper.

h = y0 + (xA − x0)
sin(θ)
cos(θ)

+
ac

2

[ xA − x0

v0 cos(θ)

]2
(23)

Before continuing, let’s define a new variable, s,
where (xA − x0) = s = 20ft ± 1/2in.. Without
rewriting, equation 23, we can see that the height,
h is a function of the nozzle exit height, the hori-
zontal displacement of the chips, the exit angle, and
the exit velocity of the chips: h(y0, s, θ, v0). At this
point, we can “plug-in” the numbers that we were
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supplied with and compute h, but we’re also inter-
ested in knowing how good our estimate of h is. To
determine this, we’ll begin by computing the partial
derivative of h with respect to each of the variables
with which h depends upon. Equations 24 through
27 present the partial derivatives of h with respect
to y0, s, θ, and v0.

∂h

∂y0
= 1 (24)

∂h

∂s
=

sin(θ)
cos(θ)

+
acs

v2
0 cos(θ)2

(25)

∂h

∂θ
= s +

s sin(θ)2

cos(θ)2
+

acs
2 sin(θ)

v2
0 cos(θ)3

(26)

∂h

∂v0
=

acs
2

v3
0 cos(θ)2

(27)

With the partial derivatives computed, we can now
form an equation to evaluate the uncertainty, uh,
in our estimate of h. This is accomplished within
a root-sum-of-squares equation where each term of
the summation is formed by combining the uncer-
tainty in each of the variables with the associated
partial derivative of that variable as shown in equa-
tion 28.

uh = ±
[( ∂h

∂y0
uyo

)2

+
(∂h

∂s
us

)2

+
(∂h

∂θ
uθ

)2

+
( ∂h

∂v0
uvo

)2] 1
2

(28)

Evaluating equations 23 and 29 we find the height
of the pile to be:

h = 1.81± 0.49ft = 21.7± 5.9in. (29)

The important thing to notice is that performing the
uncertainty analysis does not alter the estimate of
h. It does, however, allow us to evaluate how small
uncertainties in the variables may impact our abil-
ity to estimate the motion of a body. In this case,
the uncertainties assigned to each variable combine
to produce an uncertainty that’s ±27% of our pre-
dicted height.
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