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GENERAL MEASUREMENT SYSTEM MODEL

y(0)
INITIAL CONDITIONS

MEASUREMENT SYSTEM
SIGNAL INPUT SYSTEM OUTPUT

y(t)F(t)

Understanding the theoretical response of our measurement system is 
essential for

• Specification of appropriate transducers

• Understanding our measurement results 

However:   Exact response is always determined 
and confirmed through calibration
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WE WILL CONSIDER THREE GENERAL SYSTEM MODELS

1. ZERO ORDER SYSTEM

• General Model

• Response to unit step input

2. FIRST ORDER SYSTEM

• General Model (recap from temperature unit)

• Response to unit step input

3. SECOND ORDER SYSTEM 

• General Model 

• Response to unit step input

• Response to vibration or sinusoidal inputs
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Zero Order System

Characteristics of Zero Order System

• Suitable for static signals only

• System has negligible inertia 

• System has negligible damping

• Output= constant x input

Defn: A system whose behaviour is independent of 
the time-dependent characteristics of storage or 
inertia.

Figliola and Beasley, Theory and Design for Mechanical Measurements

Example:  A simple 
pressure gauge
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Response of Zero Order System

INPUT
RESPONSE

RESPONSE:
• Instantaneous response

• Output tracks input exactly

• Characterised by a zero order 
differential equation

Zero Order Response

( )oa y F t=
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First Order System

A system characterised as having time-
dependent storage or dissipative ability 
but having no inertia.

Figliola and Beasley, Theory and Design for Mechanical Measurements

For example:  A temperature sensor exhibits a first order 
response

• Response is dictated by heat transfer to transducer

First Order Response
Q(t)

1 0( ) ( ) ( )a y t a y t F t+ =&

General Response Characterised by first 
order differential equation:

Where a1 and a0 are constants
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First Order Response to Step Input

INPUT

RESPONSE

KA

Response of First Order System to Step Input:

0( ) ( )
t

y t KA y KA e τ
−

= + −
Solution to first 

order differential 
equation for step 
function input

Steady state 
component

Transient component

Where time constant τ = a1/ao
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Transducers with Mass, Inertia & Damping

Second Order System
A system whose behaviour includes time-

dependent inertia
Figliola and Besley, Theory and Design for Mechanical Measurements

Pressure and Acceleration 
transducers 

Motion of a transducer element 
is coupled to parameter under 
observation

Using the Single Degree-of-
Freedom System Model
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The Mass-Spring-Dashpot Model
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Seismic Transducer

Transducer 
Output

Dashpot providing 
viscous damping 
coefficient ζ

Springs supporting 
seismic mass

Object whose 
motion is being 
measured

Seismic Mass

M

Input F(t)

Output y(t)

Example of Second Order Transducer
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Response of a Second Order System

INPUT

RESPONSEP
os

iti
on

The Importance of Damping

• Damping governs the ability of our instrument to follow a changing 
measurement

• Too much damping slows response

• Too little results in excess oscillations from small disturbances and 
excessive ringing

• A balance must be struck between ringing and settling time
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Example of Second Order Transducer

Pressure Transducer
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f(t)

The equation of motion comes from the force 
balance equation

( ) ( ) ( ) ( )My t Cy t Ky t F t+ + =&& &
In terms of the nomenclature in our text book:

2 1 0 ( )a y a y a y F t+ + =&& &
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Second Order System
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Second Order System
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Second Order System
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Second Order System



Properties of 2nd Order Systems

[ ]nωNatural Frequency of System

The frequency of the free oscillations of a system
Figliola and Beasley, Theory and Design for Mechanical Measurements

We define the natural frequency for a system as:

0

2
n

a
a

ω =
n

k
m

ω =

We define the damping ratio for a system as:

1

0 22
a
a a

ζ =
⋅

18
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Second Order Response
Physical
Parameters

Mass

Damping

Spring rate

System 
Parameters

Ringing 
Frequency

Natural 
Frequency

Damping Ratio

System Response

Amplitude Response

Phase Response

Resonance

Filtering

Transmission Band

Frequency Amplitude DC Offset

Harmonic Forcing Function
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2nd Order Response to Step Input

0ζ =

Case 1: Undamped
Undamped Natural Frequency

0

2
n

ak
m a

ω = =

Response to step input:

Initial disturbance produces harmonic motion which continues indefinitely
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2nd Order Response to Step Input

0 1ζ< <

0.25ζ =

Ringing Frequency
21d nω ω ζ= −

Case 2: Underdamped

Response :   Displacement response overshoots the steady-state 
value  initially and then eventually decays to steady state value

2 2
2 1/ 2( ) sin( 1 ) cos( 1 )

(1 )
nt

n ny t KA KAe t tζω ζ ω ζ ω ζ
ζ

− ⎡ ⎤
= − ⋅ − ⋅ + − ⋅⎢ ⎥−⎣ ⎦
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2nd Order Response to Step Input

1ζ =

Case 3: Critically 
Damped

Response: An exponential rise occurs to approach the 
steady state value without overshooting it

( ) (1 ) nt
ny t KA KA t e ωω −= − +
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2nd Order Response to Step Input

1ζ >

Case 4: Overdamped

Response: System approaches the steady state value 
at a slow rate with no overshoot

2 2
2 2

( 1) ( 1)

2 2

1 1
( )

2 1 2 1
n nt ty t KA KA e eζ ζ ω ζ ζ ωζ ζ ζ ζ

ζ ζ
− + − − − −

⎡ ⎤+ − − −
= − ⋅ +⎢ ⎥

⎢ ⎥− −⎣ ⎦
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2nd Order Response to Step

Harmonic

We can see here the 
contrast between 
harmonic behaviour 
and exponential 
behaviour for the 
ranges of damping

Exponential

Dam
ping Increase
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2nd Order Response
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2nd Order Response
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Second Order 
Measurement System 

Behaviour
Response to Harmonic 

Excitation
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The equation of motion comes from the 
force balance equation

f(t)

( ) ( ) ( ) ( )My t Cy t Ky t F t+ + =&& &
In terms of the nomenclature in our text book:

2 1 0 ( )a y a y a y F t+ + =&& &
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Natural Frequency of System

Defn: The frequency of the free oscillations of a 

[ ]nω

system.
Figliola and Besley, Theory and Design for Mechanical Measurements

We define the natural frequency for a system as:

0

2
n

a
a

ω =n
k
m

ω =

EXPERIMENT:  To find natural frequency of an 
undamped spring mass system, allowed to 
oscillate:  

1. Set the system to vibrate naturally

2.
n

cycles
time

ω =
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Damping Ratio of System

Defn: A measure of system damping – a measure 

[ ]ζ

of a system’s ability to absorb or dissipate 
energy.

Figliola and Beasley, Theory and Design for Mechanical Measurements

We define the damping 
ratio for a system as:

1

0 22
a
a a

ζ =
⋅
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Ringing Frequency of System

Defn: The frequency of free oscillations of a 
damped system.  A function of natural 

frequency and damping ratio
Figliola and Beasley, Theory and Design for Mechanical Measurements

[ ]dω

21d nω ω ζ= −

• Independent of input signal
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Harmonic Forcing Function

A CAR DRIVING DOWN A 
BUMPY ROAD

OUR SIMPLIFIED 
MODEL

Response

y(t)

Assume:

• Sinusoidal road surface forcing function

• Spacing of bumps = wheel spacing

• Single degree of freedom system

Forcing Function 
F(t)
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Harmonic Forcing Function

Mechanical Vibration: How mechanical systems respond to 
forcing function inputs.

Consider an everyday example – the motor vehicle.

A wide range of different inputs can cause vibrations in 
motor vehicles.

Wind Engine Combustion

Road surface Mechanical Imbalance

Engine Fan Misalignment

All vibrations experienced by the driver and other occupants 
are the result of mechanical dissipation of energy in response
to some forcing function input.
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Response to Harmonic Excitation

Road Input Vehicle Output

Ampl.

Time

Ampl.

Time
Evaluation of these plots reveals two important 
quantities – gain and phase shift.

What contributes to these changes and how can 
we predict them?
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Harmonic Excitation

Harmonically excited 
2nd Order System 
Response to 
Fluctuating Inputs

Example of 
Harmonic excitation:

Mechanical Vibration
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2nd Order Response
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Harmonic Excitation



38

Harmonic Excitation
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Harmonic Excitation
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Magnitude Ratio

OBSERVATIONS

• For low damping values, the amplitude is almost 
constant up to a frequency ratio of about 0.3

• For large damping values (overdamped case), the 
amplitude is reduced substantially

• More on p 94 of Figliola

Good linearity 
before frequency 
ratio of 0.3
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Harmonic Excitation
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Harmonic Excitation



All mechanical systems act as low pass filters for 
two reasons.

1. High frequencies require higher speeds to 
reach the same amplitudes as lower 
frequencies

2. All machines have a maximum velocity (due to 
inertia).  Once the maximum velocity is reached, 
higher frequencies can only be reached by 
reducing the amplitude.

Filtering Effect of Magnitude Ratio

43
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Filtering Effect of Magnitude Ratio

As the frequency increases the gain initially increases 
(until natural frequency) and then decreases (after 
natural frequency).

While low frequency inputs are 
passed through the system, 
high frequency inputs are 
attenuated.

Such a system is called a low 
pass filter.

Gain
(dB)

Freq.

Phase
(degrees)

Freq.
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Phase Shift

The phase shift is the change in the position of 
the output vibration signal relative to the input 
vibration signal.

OBSERVATIONS

• The phase shift 
characteristics are a 
strong function of the 
damping ratio for all 
frequencies

• The frequency shift 
reaches a maximum of 
–180° at higher 
frequencies (above the 
natural frequency).
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Mechanical Resonance

Defn: The frequency at which the magnitude ratio 
reaches a maximum value greater than unity.

Figliola and Beasley, Theory and Design for Mechanical Measurements

Gain
(dB)

Freq.

Phase
(degrees)

Freq.

Systems natural frequency (resonance) 
occurs when the phase shift is exactly -
90°

For underdamped systems we 

observe a dramatic increase in gain.

For frequencies above resonance 
the gain decreases as the phase 
shift approaches -180 deg.
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Tacoma Narrows Bridge

The old Tacoma Narrows bridge was named 
Galloping Gertie after its completion in July 1940 
because it vibrated violently in some wind 
conditions
Crossing it was like a roller-coaster ride, and 
Gertie was quite popular. 
November 7, 1940, a day high winds, Gertie
took on a 30-hertz transverse vibration with an 
amplitude of 1½ feet!
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Galloping Gertie After The Storm

• Wind-tunnel testing of bridge designs along 
with considerations for resonant behavior are 
now used to insure against similar disasters. 

Old Tacoma Narrows Bridge New Narrows Bridge!



49

Operating in the Resonance Band

21 2R nω ω ζ= −

The Resonance Frequency for 
underdamped systems:

Resonance Band

• Systems with damping 
ratio greater than 0.7 
do not resonate

• Resonance is excited by a periodic input signal

• The peak gain occurs slightly below the system resonance due to 
damping

• Operating an underdamped systems at resonance can cause 
serious damage – Tacoma Narrows bridge
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Phase Shift in the Resonance Band
Resonance Band

OBSERVATIONS

• Phase shift jumps to –π

• The lower the damping ratio, the more sudden the jump

/ 1nω ω =
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Pragmatic Interpretation

Ideally system should 
have:

Linear frequency response 
across all ranges
With zero phase shift

Real world 
We must use an instrument 
over it’s linear range where

Response is flat
Phase shift predictable

Some compensation is also 
possible using electronic 
methods
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Theoretical 2nd Order Response

1
2

2 ( / )( ) tan
1 ( / )

n

n

ζ ω ωω
ω ω

− ⋅ ⋅
Φ = −

−

( ) ( )sin[ ( )]steadyy t B tω ω ω= + Φ

Steady state response to sinusoid input
B(ω) is Amplitude

Frequency Dependent Phase Shift
As ω/ωn becomes large:

Φ(ω) approaches π

2 2 2

1( )
[1 ( / ) ] (2 / )n n

M ω
ω ω ζω ω

=
− +

Frequency Magnitude Ratio
As ω/ωn becomes large:

M(ω) approaches zero
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Chapter 4Chapter 4

Probability And Probability And 
StatisticsStatistics
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Probability And StatisticsProbability And Statistics
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Probability And StatisticsProbability And Statistics
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Random Variables
Say you have a velocity probe that you can put into a turbulent flow.  
You know that turbulent flows are characterized by random fluctuations 
in velocity.  So, even though you may have the wind tunnel speed fixed, 
and nothing else is changing, every time you sample the velocity signal, 
you get a different reading.

There are three things you need to describe a random variable 
statistically: 1) The average value, 2) some description of the size of 
the variations and 3) what type of distribution.
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Probability And StatisticsProbability And Statistics

We define x’ to be the true mean value of the random 
variable x.  With a finite number of samples, we will never 
know the value of x’ exactly, but we will learn ways to 
estimate it.  
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Random Variables
We are going to concentrate on random variables that have what is 
known as central tendency, which means that if you take a bunch of 
samples, many of them will collect near a single value.  You can see 
central tendency if you plot the data in question on a histogram.

0

5

10

15

20

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Thermo II 2002

C
ou

nt

out of 1

n j

N=64
K = 7

}
2δx
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Probability Density Function

If we have a histogram plot, and we let the 
number of data points go to infinity while the size 
of the bins goes to zero, we get a “probability 
density function”

p(x) = lim
N →∞,δx →0

n j

N 2δx( )
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Probability And StatisticsProbability And Statistics
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Probability Density Functions
Examples: (see Table 4.2)

• Normal (Gaussian, bell 
curve) - Describes almost 
anything real if you take 
enough data

• Poisson - Describes events 
occurring randomly in time 
(e.g. radioactive decay)
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For a Normal Distribution 
the pdf is given by

p(x) =
1

σ 2π( )1/ 2 exp −
1
2

(x − x ')2

σ 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 



Mean and Variance
• No matter which distribution you have, the mean value (central 
tendency) is given by

x'= lim
T →∞

1
T

x(t)
0

T

∫
• And the variance is 

σ 2 = lim
T →∞

1
T

x(t) − x'[ ]2

0

T

∫ dt

• For infinite discrete series, these are

σ 2 = lim
N →∞

1
N

xi − x '[ ]2

i=1

N

∑x'= lim
N →∞

1
N

xi
i=1

N

∑
71
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Mean and Variance

• A fundamental difficulty arises in the definitions 
given by the equations earlier, in that they assume an 
infinite number of measurements

• What if the data set is finite ?

• We will look into the connection between probability 
and statistics and then into the practical treatment of 
finite sets of data
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Probability theory examines the properties of random 
variables, using the ideas of random variables, 
probability and probability distributions.

Statistical measurement theory (and practice) uses 
probability theory to answer concrete questions about 
accuracy limits, whether two samples belong to the 
same population, etc.

“The analysis of data inevitably involves some trafficking 
with the field of statistics, that gray area which is not quite a 
branch of mathematics – and just as surely not quite a 
branch of science.” [H. Press et. al., Numerical Recipes, Cambridge 
Univ. Press, Chap. 14]

Probability & Statistics
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Probability & Statistics

To find the interval in which the measurand
value will fall under given experimental 
conditions we need to sort out few background 
ideas first

A good start is to clarify the relationship 
between probability theory and statistical 
measurement theory
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Probability And StatisticsProbability And Statistics
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Probability And StatisticsProbability And Statistics

See Example 4.1 page 112
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Having a set of repeated measurement Having a set of repeated measurement 
data, we want to know how to:data, we want to know how to:

1. Find the best estimate for the measured 
variable (the measurand)

2. Find the best estimate for the measurand
variability

3. Find the interval in which the measurand
value will fall under given experimental 
conditions
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Example:  Consider the Wind speed data:

Sample #
Wind 

speed
 data

Running
 average Sample #

Wind 
speed
 data

Running
 average Sample #

Wind 
speed
 data

Running
 average Sample #

Wind 
speed
 data

Running
 average

1 11.5365 11.5365 26 16.1416 12.6104 51 16.9181 12.5474 76 7.1871 12.0829
2 9.2332 10.3849 27 12.9392 12.6226 52 15.3221 12.6008 77 11.9689 12.0814
3 12.9846 11.2515 28 14.5035 12.6898 53 12.6510 12.6017 78 15.3700 12.1236
4 18.7957 13.1375 29 7.3669 12.5062 54 5.3269 12.4670 79 8.4892 12.0776
5 8.5051 12.2110 30 11.1278 12.4603 55 11.8757 12.4563 80 10.8533 12.0623
6 12.3544 12.2349 31 8.6197 12.3364 56 14.2836 12.4889 81 15.8850 12.1095
7 15.8414 12.7501 32 7.4469 12.1836 57 11.2585 12.4673 82 11.4947 12.1020
8 8.7258 12.2471 33 10.4165 12.1300 58 13.1818 12.4796 83 7.3016 12.0441
9 11.9886 12.2184 34 10.9251 12.0946 59 7.8915 12.4019 84 13.7059 12.0639

10 14.5874 12.4553 35 14.0136 12.1494 60 6.4132 12.3020 85 7.8833 12.0147
11 11.0471 12.3272 36 14.2179 12.2069 61 12.5804 12.3066 86 13.0810 12.0271
12 13.6365 12.4363 37 16.3352 12.3185 62 17.2129 12.3857 87 11.4623 12.0206
13 12.3296 12.4281 38 17.0296 12.4424 63 14.0680 12.4124 88 15.0626 12.0552
14 9.1848 12.1965 39 11.4896 12.4180 64 7.0001 12.3279 89 10.4630 12.0373
15 11.6655 12.1611 40 13.3769 12.4420 65 8.2330 12.2649 90 8.6416 11.9996
16 14.7416 12.3224 41 10.3996 12.3922 66 13.4989 12.2836 91 12.3941 12.0039
17 11.4189 12.2692 42 13.3815 12.4157 67 11.7140 12.2751 92 12.4995 12.0093
18 7.3487 11.9958 43 11.3415 12.3907 68 13.1620 12.2881 93 9.9212 11.9869
19 13.5740 12.0789 44 10.2202 12.3414 69 14.5516 12.3209 94 15.9513 12.0290
20 16.6338 12.3067 45 15.3365 12.4080 70 6.4819 12.2375 95 14.1887 12.0518
21 14.6856 12.4199 46 15.4909 12.4750 71 10.1296 12.2078 96 10.7504 12.0382
22 13.7430 12.4801 47 6.2576 12.3427 72 10.8048 12.1883 97 12.5755 12.0437
23 18.4066 12.7378 48 16.7661 12.4348 73 12.8268 12.1971 98 10.0896 12.0238
24 6.2973 12.4694 49 15.1833 12.4909 74 10.4948 12.1741 99 14.0007 12.0438
25 12.4632 12.4692 50 10.9444 12.4600 75 10.2319 12.1482 100 16.6868 12.0902
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Let’s plot them first:
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Look at another data set:



81

What can we conclude?

First data set exhibits central tendency

Second data set exhibits trend
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What else?

On the first set:

The data points seem to oscillate around 12 or 13 or 
close to that

The data points lie between 6 and 19 approximately
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Next, we can make a histogram

Histogra m
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Which one is the right one?

Number of bins, K = 1.87(N-1)0.4 + 1      (Eq. 4.2) pg. 111

For our data, N = 100, K = 13 
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Next, we can make a histogram

Histogra m
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Which one is the right one?

Number of bins, K = 1.87(N-1)0.4 + 1      (Eq. 4.2) pg. 111

For our data, N = 100, K = 13 
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Let’s have a look at yet another data set:

Sample # Value Running
 average Sample # Value Running

 average Sample # Value Running
 average Sample # Value Running

 average
1 3 3.0000 26 3 4.6538 51 0 4.8431 76 6 4.8158
2 1 2.0000 27 8 4.7778 52 5 4.8462 77 2 4.7792
3 4 2.6667 28 3 4.7143 53 8 4.9057 78 0 4.7179
4 1 2.2500 29 2 4.6207 54 2 4.8519 79 8 4.7595
5 5 2.8000 30 7 4.7000 55 0 4.7636 80 9 4.8125
6 9 3.8333 31 9 4.8387 56 9 4.8393 81 9 4.8642
7 2 3.5714 32 5 4.8438 57 7 4.8772 82 8 4.9024
8 6 3.8750 33 0 4.6970 58 4 4.8621 83 6 4.9157
9 5 4.0000 34 2 4.6176 59 9 4.9322 84 2 4.8810
10 3 3.9000 35 8 4.7143 60 4 4.9167 85 8 4.9176
11 5 4.0000 36 8 4.8056 61 4 4.9016 86 0 4.8605
12 8 4.3333 37 4 4.7838 62 5 4.9032 87 3 4.8391
13 9 4.6923 38 1 4.6842 63 9 4.9683 88 4 4.8295
14 7 4.8571 39 9 4.7949 64 2 4.9219 89 8 4.8652
15 9 5.1333 40 7 4.8500 65 3 4.8923 90 2 4.8333
16 3 5.0000 41 1 4.7561 66 0 4.8182 91 5 4.8352
17 2 4.8235 42 6 4.7857 67 7 4.8507 92 3 4.8152
18 3 4.7222 43 9 4.8837 68 8 4.8971 93 4 4.8065
19 8 4.8947 44 3 4.8409 69 1 4.8406 94 2 4.7766
20 4 4.8500 45 9 4.9333 70 6 4.8571 95 1 4.7368
21 6 4.9048 46 9 5.0217 71 4 4.8451 96 1 4.6979
22 2 4.7727 47 3 4.9787 72 0 4.7778 97 7 4.7216
23 6 4.8261 48 7 5.0208 73 6 4.7945 98 0 4.6735
24 4 4.7917 49 5 5.0204 74 2 4.7568 99 6 4.6869
25 3 4.7200 50 1 4.9400 75 8 4.8000 100 7 4.7100
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And plot the data…
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And make a histogram:

Histogram
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Let’s compare the two histograms

Histogram

0
2
4
6
8

10
12
14
16

6 7 8 9 10 11 12 13 14 15 16 17 18
M

or
e

Bin

Fr
eq

ue
nc

y

Histogram

0

2

4

6

8

10

12

14

16

18

Bin

Wind speed data Second data set



89

Answer to Question 1:

1. To find the best estimate for the 
measured variable (the measurand)

Use the mean value!

1

1 N

ix x
N

= ∑
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Answer to Question 2:

2. To find the best estimate for the 
measurand variability

Use the Sample variance

Or the Sample standard deviation

( )
2

2

1

1
1

N

x iS x x
N

= −
− ∑

2
x xS S=
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How do we add up sample means, How do we add up sample means, 
variances and standard deviations?variances and standard deviations?

x a b= + Then,  Let  

2 2 2

2 2

x a b

x a b

x a b
S S S

S S S

= +

= +

= +

Means add up

Variances add up

Standard deviations don’t simply
add up

Provided that a and b are uncorrelated!



92

A bathroom scale example

A series of 100 weight measurements 
were performed on a (badly tuned) 
bathroom scale.  A weight of 50 lb was 
repeatedly measured by a class in 1996.
10 groups made 10 measurements each.

The raw data with running average is 
shown in the following figure.
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A series of 100 weight measurements
(Running average at point i is an average of points from 1 to i )
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Some initial 
observations

The data scatter varies 
from group to group (i.e. 
the ranges 31-40, 41-50 
and 51-60 are notably 
more uniform).
Although the data scatter is considerable, the running 
average quickly converges to a stable value (central 
tendency).
Data points tend to cluster closer to the upper limit of 
the data range.
The true value is outside the data scatter, indicating 
heavy bias.
The bias is negative.
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Next we 
examine
the histogram

The histogram confirms that the data 
are skewed towards upper limit. 
The histogram gives an intuitive idea of 
a probability distribution, but we cannot 
refine it much more.
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A different 
route

Sample cumulative distribution

The sample cumulative distribution is much 
smoother and does not require the selection of 
bins and the distribution of data into them. A 
smooth curve is easy to fit through the sample 
(staircase) curve.
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The probability distribution

( )( )      and       ( ) ( )

( ) ( ) ( ) ( )

x

b

a

dF xf x F x f x dx
dx

P a x b F b F a f x dx

−∞

= =

< ≤ = − =

∫

∫
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The Probability Density Function



99

The Probability Density Function



Infinite Statistics

• In a perfect world, we have an infinite number of data points.  
In reality, this is not the case, but for now, we assume it is. 

• If we wish to know the probability of x taking on some range 
of values,we simply integrate the pdf over that range:

P(x'−δx ≤ x ≤ x'+δx) = p(x)dx
x'−δx

x'+δx

∫

100



Infinite Statistics
• If we know what type of distribution we have and we know x’ and 
σ, then we know p(x) and we could perform the integral.  

• We can make the integral easier by transforming the variables a 
little bit.  

• Make z1 =(x1-x’)/ σ and β = (x - x’)/ σ.  

• Put in the normal distribution for P(x) and get:

P(−z1 ≤ β ≤ z1) =
1

(2π )1/ 2 e−β 2 / 2

−z1

z1

∫ dβ

101
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Infinite Statistics
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Infinite Statistics
P(−z1 ≤ β ≤ z1) =

1
(2π )1/ 2 e−β 2 / 2

−z1

z1

∫ dβ

Since the gaussian distribution is symmetric about x’, we can 
write this as 

P(−z1 ≤ β ≤ z1) = 2 1
(2π )1/ 2 e−β 2 / 2

0

z1

∫ dβ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

The term in the brackets is called the error function.  You have 
probably seen it before, you certainly will again, and now you 
know why they call it that.  
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Probability Density Function and 
Probability
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Probability values for Normal Error 
Functions
Table 4.2
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Normal or Gaussian Distribution

z = 1 z = 2 z = 3z = 0z = –1z = –2z = –3

'x xz
σ
−

=

See Table 4.2 pg,. See Table 4.2 pg,. 
114 for other types 114 for other types 
of distributionsof distributions

P(−z1 ≤ β ≤ z1) =
1

(2π )1/ 2 e−β 2 / 2

−z1

z1

∫ dβ

Note: p(x) is the “probability density of x”
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Gaussian Distribution Highlights

We expect that measurements will show  
Gaussian distributed deviations due to random 
variations.
± One standard deviation contains 68.3% of data.
± Two standard deviations contain 95.5% of data.
± Three standard deviations contain 99.7% of 
data.
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Normal or Gaussian Distribution
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Normal or Gaussian Distribution
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Normal Error Function Table
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Normal or Gaussian Distribution
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Finite Statistics

• When ‘N’ is finite (less than infinity) all of the characteris-
tics of a measured value may not be contained in ‘N’ data 
points

• Statistical values obtained from finite data sets should be 
considered only a estimates of the true statistics

• Such statistics is called “Finite Statistics”

• Whereas the true behavior of a variable is described by 
its infinite statistics, finite statistics only describe the 
behavior of the finite data set
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(4.14a)

(4.14b)

Finite Statistics
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Finite Statistics
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(4.15)

t-estimate
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Student-t Distribution – Table 4.4 in the text
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Finite Statistics
Student’s t-distribution
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If we know the true standard deviationIf we know the true standard deviation

We express the range of possible measurand values as 
a confidence interval, given at a certain confidence level:

( )'         %xx x u P= ±

If we know the true standard deviation, σ, then

( )
( )
( )

( )

50

95

99

95 95

' 0.67      50%

' 1.96      95%

' 2.58      99%
0.95 is the value of  for which 0 0.475

2

x x

x x

x x

x x z x

x x z x

x x z x

z z P z z

σ σ

σ σ

σ σ

= ± = ±

= ± = ±

= ± = ±

< ≤ = =

The probability that the i th measured value of x will have a value 
between x’ + z1σ, is 2P(z1) x 100 = P%



If we donIf we don’’t know the true standard t know the true standard 
deviationdeviation

We use the sample standard deviation, Sx, 
but we pay the “penalty”:

( )
( )
( )

,50

,95

,99

14,95

' 0.692      50% , 14

' 2.145      95% , 14

' 2.977      99% , 14
 is the value of  for 14 and 95%,  table 4.4

x x

x x

x x

x x t S x S

x x t S x S

x x t S x S
t t P

ν

ν

ν

ν

ν

ν
ν

= ± = ± =

= ± = ± =

= ± = ± =

= =

Note: The figures above are an example for the sample size
of N = 15 samples, with ν = N-1 = 14 degrees of freedom.
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How do the How do the truetrue and and samplesample standard standard 
deviations of the mean depend on the deviations of the mean depend on the 

sample size?sample size?

1,

;      ,  thus

'  if  is known, or

'  if  is not known

x x
x x

x
P x

x
N P x

SS
N N

x x z
N
Sx x t
N

σσ

σ σ

σ−

= =

= ±

= ±
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Standard Deviation of the Means
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Standard Deviation of the Means

Sx =
Sx

N1/ 2

x'= x ± tv,P Sx         (P%)
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Example for small samples

A Micrometer is calibrated to eliminate bias errors
Four independent measurements of shaft diameter are 
made: 25.04, 24.91, 24.98, 25.06 mm
What is the uncertainty associated with the 
measurements in this application?
Variations are partly due to the measurement process, 
partly due to real variation in the shaft diameter.
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Sample Statistics (Example)

( )21 0.0675 mm
1x iS x x

N
= − =

− ∑

1 24.9975 mmix x
N

= =∑

Degrees of freedom, ν = N - 1 = 3
t3,95 = 3.182 from Table 4.4
Our uncertainty is about 1.5 times larger because of 
the small sample (3.182 vs 1.96)
1.96 is the value for t3,95 at N = infinity
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Mean of four measurements

3,95
0.06753.182 0.107 mm 0.11 mm

4
xSt
N

= = ≈

The mean diameter of the shaft is 25.00 mm 
±0.11 mm at 95% confidence level.
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An additional measurement

If we now make a single measurement on 
another shaft and get 24.90 mm, then

The diameter of that shaft at that location is 

D = 24.90 mm ± 0.22 mm      (95%).

3,95 3.182 0.0675 0.215xt S = × =
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Pooled Statistics
This section just states that if you perform M separate identical 

experiments, each consisting of N samples, you will get the same 
statistics as if you had a single experiment with M x N
measurements (seems pretty obvious ?)
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Pooled Statistics



Chi-Squared Distribution (ki-squared)

If we were to repeat our N measurements a few times, we would 
compute a different estimate of the standard deviation Sx each time.  
(Remember that we said the same thing about the mean).  There is a 
distribution (pdf) of the variance of measurements of a gaussian
(normal) process, and it is called Chi-Squared.    

129

χ 2 = νSx
2 /σ 2,

ν = N −1
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Chi-Squared Distribution
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Chi-Squared Distribution
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Chi-Squared Distribution
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Chi-Squared Distribution



134

Chi-Squared Distribution
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Chi-Squared Distribution
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Goodness of Fit Test

N=64
K = 7
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Goodness of Fit Test
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Goodness of Fit Test
We are going to assume that our data fits a normal 
(gaussian) distribution.  If we have a set of data 
and we want to make sure this is a good fit, we use 
this test.  
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nj j = 1, 2,… K

χ 2 =
n j − n' j( )2

n j
'
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∑



N=64
K = 7

nj x = 0.6196
Sx = 0.14136

j = 1 … K

χ 2 =
n j − n' j( )2

n j
'

j
∑

Goodness of Fit Test
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n’1 = P (0.3 ≤ x ≤ 0.4) = P (0.3 ≤ xi ≤ 0.62) – P (0.4 ≤ xi ≤ 0.62)
= P(za) - P(zb)

Recall that za = (xa-x’) / σ
= P(-2.26) – P(-1.55) = 0.4881 - 0.4394 

= 0.0487, or 4.9%
4.9% of 64 is 3.11, so nj - n’j = -0.11
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Probability in a band

=

–
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Regression Analysis

Used to determine the functional form of data.  Often, we will know 
from some theory that y = Ae-Bx, but we may not know what A and B
are.  A regression analysis can find the best guess for A and B.  This 
type of analysis can be done for any y = f(x) (your book incorrectly 
says that it is limited to polynomials).  



Least-Squares Regression

Generally, we will assume that our data represents some function
y = f(x; a, b, …) where a and b are the coefficients to be determined.  
This technique tries to minimize (Least) the square of the difference 
(squares) between the data and the assumed function.  It will 
calculate the values of a, b,…. that do this.  If the assumed function 
is linear in a, b, …., then this method can do it in one shot.  If not, it 
will iterate starting with initial guesses for all of the parameters.

I am not interested in you understanding the nuts and bolts of this 
technique.  You can get the subroutines from Numerical Recipes or 
use a graphing package like Kaleidagraph.  I do want you to 
understand the application and limits of the technique. 
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Curve Fitting Examples
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Number of Measurements Required

Again, the books discussion on this topic is confusing since it uses a 
t-estimator.  There is nothing wrong with this approach, but it is
perhaps easier to understand using infinite statistics.  Say we have a 
measurement of some random data, and we want to know its mean 
with an error smaller than 5%.  If we have some estimate of its 
standard deviation, then we know that 

The above statement says that we want to be less than 5% of 

Sx =
Sx

N 1/ 2

Sx x 
0.05 = Sx / x = Sx

x N 1 / 2

N =
Sx

0.05 x 
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2
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Required Samples
But how do we know Sx?

σu
2/U2

N =
σ u

X%U
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2


