Chapter 3

Second Order
Measurement System
Behaviour



GENERAL MEASUREMENT SYSTEM MODEL

INITIAL CONDITIONS

y(0)

|

SIGNAL INPUT
F(t) —

SYSTEM OUTPUT
—_— V(1)

Understanding the theoretical response of our measurement system is
essential for

» Specification of appropriate transducers

» Understanding our measurement results

However: EXxact response is always determined
and confirmed through calibration



WE WILL CONSIDER THREE GENERAL SYSTEM MODELS
1. ZERO ORDER SYSTEM

 General Model

 Response to unit step input
2. FIRST ORDER SYSTEM
« General Model (recap from temperature unit)
« Response to unit step input
3. SECOND ORDER SYSTEM
» General Model
 Response to unit step input

* Response to vibration or sinusoidal inputs



Zero Order System

Defn: A system whose behaviour is independent of
the time-dependent characteristics of storage or

Inertia.

Figliola and Beasley, Theory and Design for Mechanical Measurements

Display scale
Example: A simple

Characteristics of Zero Order System pressure gauge /
* Suitable for static signals only

« System has negligible inertia

« System has negligible damping

 Qutput= constant x input
Sliding pistan

intake valve



Response of Zero Order System
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RESPONSE:

* Instantaneous response
* Output tracks input exactly

« Characterised by a zero order
differential equation




First Order System

A system characterised as having time-
dependent storage or dissipative ability
but having no inertia.

Figliola and Beasley, Theory and Design for Mechanical Measurements

For example: A temperature sensor exhibits a first order
response

Response is dictated by heat transfer to transducer

General Response Characterised by first
order differential equation:

First Order Response
| QW
a,y(t)+a,y(t) = F(t)

Where a, and a, are constants
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Transducers with Mass, Inertia & Damping

Second Order System

A system whose behaviour includes time-

dependent inertia

Figliola and Besley, Theory and Design for Mechanical Measurements

> Pressure and Acceleration
transducers

» Motion of a transducer element
IS coupled to parameter under
observation

» Using the Single Degree-of-
Freedom System Model

e

—» F(t)




The Mass-Spring-Dashpot Model

"_
—
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Spring Force
- Sitffness x Displ.

Spring with
Stiffness=K

- Coeff. « Veloeity

Damping Force

Damper with
LI" Coeff.=C
Equilibrium
: D=0
Mass =M i

Damper

Coll Spring =

Displacement = +0)

Gravity Force =
Mass x Accel.



Example of Second Order Transducer

Seismic Mass

Dashpot providin
viscous damp
coefficient ¢

Springs supportir
seismic mass

Object whose —"
motion is being
measured

g
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Seismic Transducer

Output y(t)

Transducer
-
M Output

Input F(t)
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Response of a Second Order System

120

100 +—

a0

Gl

Position

40

20

0

INPUT ~U
N

N

—~—

D RESPONSE

0 20 40 B0 80 100

Time [s]

The Importance of Damping

Damping governs the ability of our instrument to follow a changing
measurement

Too much damping slows response

Too little results in excess oscillations from small disturbances and
excessive ringing

A balance must be struck between ringing and settling time

11



Example of Second Order Transducer

Pressure Transducer

3
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The equation of motion comes from the force

f(t) —

balance equation

A N

e

—» F(t)

L

y

My (t) +Cy(t) + Ky(t) = F (1)

In terms of the nomenclature in our text book:

a2y+aly+aoy — F(t)

13



Second Order System

Possesses 1nertia and contains a second
deviative term, such as accelerometers,
diaphragm pressure transducers, and
acoustic microphones.

a,V+a;y+aoy= F(t) or
(1/(Wa2)) V+ (2L y) / wa+ v = KF(1)

where
Wn = \/ ao,/ a, = natural frequency

14



Second Order System

* ; =a1/(2(aoa-) ]’Q) Zeta= damping ratio

e The damping ratio 1s a measure of system
damping, a property of a system that
enables 1t to dissipate energy internally.

15



Second Order System

Homogeneous solution

* Quadratic equations have two roots

V(w2) A +2¢wn)A+1=0  >> A1, A»

Miha= —Lwat Wa/(2- 1

*Homogeneous solution gives us the transient response

*Finds the roots of the characteristic equation

16



Second Order System

The three forms of homogeneous solution
depend on the value of damping

0<C<1 (underdamped) — oscillatory

response Q
yu(t) = Ce =™ sin(wn\/ 1-(2t+ 6

* £=1 (critically damped- asymptotically approaches SS)
Ayt )
ya(t) = Cie " + Cate™
* {>1 (overdamped)

yu(t) = Cie" + Cre™!

17



Properties of 2"d Order Systems

Natural Frequency of System [, ]

The frequency of the free oscillations of a system

Figliola and Beasley, Theory and Design for Mechanical Measurements

We define the natural frequency for a system as: /\\:/\
e —P F(f)
a c
., = h @, = —
) -
m a,
L

We define the damping ratio for a system as:

— a‘l
2\/a,-a,

18



Second Order Response

Physical

Parameters

Mass

Damping

Spring rate

System

Parameters

Natural

Frequency

Damping Ratio

Ringing

Frequency

=T

Harmonic Forcing Function

System Response

Amplitude Response

Phase Response

Transmission Band

Resonance

Filtering

Frequency

Amplitude

DC Offset
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29 Order Response to Step Input

Case 1. Undamped
/k /ao
a)n = = —_—
A m d,

0

T
|

Qutput signal it

Undamped Natural Frequency

Response to step input:

Initial disturbance produces harmonic motion which continues indefinitely

20



29 Order Response to Step Input

A

Ringing Frequency

Case 2: Underdamped

Wy = @, 1_52

Cutput signal wft)

0<g <l
¢ =0.25 o

Response : Displacement response overshoots the steady-state
value initially and then eventually decays to steady state value

52)1/2 sin(@, /1—¢7 1) +cos(w,A/1-¢7 -t)}

(I-¢

y(t) = KA— KAg ! {

21



29 Order Response to Step Input

Case 3: Critically
Damped

Qutput signat yit)

=1

Response: An exponential rise occurs to approach the
steady state value without overshooting it

y(t) = KA— KA1+ o t)e™™

22



2nd Order Response to Step Input

Case 4. Overdamped A

Qutput signal vt

¢ >1

Response: System approaches the steady state value
at a slow rate with no overshoot

y(t) = KA-KA- é/_'_ v e( §+\/7)wt é, \/é/ e(_g_\/ﬁ)wnt

2\/7 2J¢7 -1
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2"d Order Response to Step

Harmonic

We can see here the
contrast between i
harmonic behaviour o \\ \
and exponential
behaviour for the
ranges of damping

U
N
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-2

a2

2"d Order Response

Duration of transient response controlled by
Co,. For £>1, the response y_ 2 KA at t2>x,
but for larger Lo, the response 1s faster.
Time required to reach 90% of step mput
Au(t)=KA-y, 1s called rise time. Rise time 1s

decreased by decreasing the damping ratio
I}.ﬂ'

-
-

Time to reach +10% of steady state 1s called
settling time for oscillatory systems.

Note: a faster rise may not necessarily reach a steady

state faster if the oscillations are large.

25



Qutput signal Ef) [V]

2"d Order Response

Steady response
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Second Order
Measurement System
Behaviour

Response to Harmonic
Excitation

27



The equation of motion comes from the

f(t) —

force balance equation

A AL
\

c

» Ft)

y

My () +Cy(t) + Ky(t) = F (1)

In terms of the nomenclature in our text book:

a2y+a1y+aoy — F(t)

28



Natural Frequency of System [w, ]

Defn: The frequency of the free oscillations of a
system.

Figliola and Besley, Theory and Design for Mechanical Measurements

k
_/\v/\_
We define the natural frequency for a system as: c m —p Fi)
K a, _
D, =, [— o, = |— s,
m a,

EXPERIMENT: To find natural frequency of an
undamped spring mass system, allowed to
oscillate:

1. Set the system to vibrate naturally
2. cycles
=9
time

n

29




Damping Ratio of System [{]

Defn: A measure of system damping — a measure
of a system’s ability to absorb or dissipate

energy.
Figliola and Beasley, Theory and Design for Mechanical Measurements
k
ANANE

V

c e —P F(f)
We define the damping =
ratio for a system as: —

[=—2
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Ringing Frequency of System [@j |

Defn: The frequency of free oscillations of a
damped system. A function of natural
frequency and damping ratio

Figliola and Beasley, Theory and Design for Mechanical Measurements

Wy =0)n\/1—§2

Independent of input signal

31



Harmonic Forcing Function

A CAR DRIVING DOWN A

OUR SIMPLIFIED
BUMPY ROAD Response

MODEL
| y(t)

Forcing Function
F(t)

Assume:
« Sinusoidal road surface forcing function
« Spacing of bumps = wheel spacing

» Single degree of freedom system 1



Harmonic Forcing Function

Mechanical Vibration: How mechanical systems respond to
forcing function inputs.

Consider an everyday example — the motor vehicle.

A wide range of different inputs can cause vibrations in
motor vehicles.

Wind Engine Combustion
Road surface Mechanical Imbalance
Engine Fan Misalignment

All vibrations experienced by the driver and other occupants
are the result of mechanical dissipation of energy in response

to some forcing function input.
33



Response to Harmonic Excitation

Road Input

Ampl.

Time

Evaluation of these plots reveals two important

Ampl.

Vehicle Output

AVAVAVAV

>

Time

guantities — gain and phase shift.

What contributes to these changes and how can

we predict them?

34



Harmonic Excitation

» Harmonically excited
2"d Order System

Response to [\ o
Fluctuating Inputs v
_glll l L /
» Example of
Harmonic excitation: |

Mechanical Vibration




2"d Order Response

Sine Function Inpuft

» Response of 224 order system to F(t)=A sin Mt
y(t) = yp+ {KAsin[wt+ o (W)]}

(1= (w/wa) T + 24w/ wa)}'

+ Frequency dependent phase shift

o (W)= -tan '(2Lw/ wa)/ (1= (W/Wa)°)

Exact form of y, depends on (£) damping ratio

Note: h = homogeneous solution

36



Harmonic Excitation

Steady State Response
* Y.o(=P(0) sin [ot+(m)]

« Amplitude:
B(0)=KA/{[1-(00/ 0,)71+(25 &/ %}

* The amplitude of the output signal from a

second-order measurement system 1s frequency

dependent.

37



Harmonic Excitation

Magnitude Ratio

* Magnitude Ratio:
m(®) = B/KA
* o, 1s a function of the measurement system

* ® 1s a function of the mput signal

38



Magnitude ratio M(w)

Harmonic Excitation

Resonance

brd o Fi1g 3.16 and Fig 3.17

< 1 text demonstrate
JT””S;"JSS“’” magnitude and phase
i as functions of @/ @n
m
F * In ideal system.,
| Filter m(m)=1.0 and
band
P(®)=0
* In general, as ©/ ®,
gets large, m(®)—20
. and o(®)=2-7

39



Magnitude ratio M(w)

Maagnitude Ratio

2.0

1.5

1.0
0.8

0.6

0.4

0.2

¢ =10.0

0.1 | l l
0.05 0.1 0.20 0.5 1.0 2.0 3.0

OBSERVATIONS ’

* For low damping values, the amplitude is almost
constant up to a frequency ratio of about 0.3

* For large damping values (overdamped case), the
amplitude is reduced substantially

* More on p 94 of Figliola

+6

-15

_

Decibels [dB]

Resonance
band

Transmission
band

i

Filter
band

Good linearity
before frequency
ratio of 0.3
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Harmonic Excitation

Resonance Frequency

Wi = Wiy 1 - 202

o [t 1s a property of MS, operating near resonance
frequency. It can damage or distort either the data or
the mstrument.

* When o = o, m(o) = w0, and ¢(®) = -m. 1t occurs
for the underdamped system £ = 0. It 1s called the
resonance band.

« Systems with damping £ > 0.7 do not resonate.

41



Harmonic Excitation

Resonance Frequency cont:

* Atlow 0/ ®_, m(®) = 1 and () = 0. This 1s called the
transmission band, which 1s defined by

3dB = m(m) = -3dB.

» Here we have a representation of the dynamic
signal content.

+ At large ®/ ®_, m(®) =0, which is called the filter band
* m(o) < -3dB
» Here we lose high frequency signal content, which

1s good only if you want low frequency
information!

42



Filtering Effect of Magnitude Ratio

All mechanical systems act as low pass filters for
two reasons.

1. High frequencies require higher speeds to
reach the same amplitudes as lower
frequencies

2. All machines have a maximum velocity (due to
inertia). Once the maximum velocity is reached,
higher frequencies can only be reached by
reducing the amplitude.

43



Filtering Effect of Magnitude Ratio

As the frequency increases the gain initially increases

(until natural frequency) and then decreases (after
natural frequency).

Gain —— While low frequency inputs are
(dB) passed through the system,
. high frequency inputs are
Freq attenuated.
. \ Such a system is called a low
(degrees) L pass filter.

Freq.

44



Phase shift [°] d(w)

Phase Shift

The phase shift is the change in the position of
the output vibration signal relative to the input
vibration signal.

-100 —

=120 =

~140|—

-160—

-180

10.0
5.0

2.0

1.0
0.7
0.5
0.4

{=03

OBSERVATIONS

1 1
0.05

L
1.0

2.0

* The phase shift
characteristics are a
strong function of the
damping ratio for all
frequencies

» The frequency shift
reaches a maximum of
—180° at higher
frequencies (above the
natural frequency).
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Mechanical Resonance

Defn: The frequency at which the magnitude ratio
reaches a maximum value greater than unity.

Figliola and Beasley, Theory and Design for Mechanical Measurements

Gai /\ Systems natural frequency (resonance)
am cpy
occurs when the phase shift is exactly -

(dB) \ 00°
For underdamped systems we

>
Frdq. observe a dramatic increase in gain.
A
Phase For frequencies above resonance
the gain decreases as the phase
d
(degrees) shift approaches -180 deg.

Freq.

46



Tacoma Narrows Bridge

» The old Tacoma Narrows bridge was named
Galloping Gertie after its completion in July 1940
because it vibrated violently in some wind
conditions

» Crossing it was like a roller-coaster ride, and
Gertie was quite popular.

» November 7, 1940, a day high winds, Gertie
took on a 30-hertz transverse vibration with an
amplitude of 1% feet!

47



Galloping Gertie After The Storm

« Wind-tunnel testing of bridge designs along
with considerations for resonant behavior are
now used to insure against similar disasters.

Old Tacoma Narrows Bridge New Narrows Bridge!

B




Operating in the Resonance Band

The Resonance Frequency for
underdamped systems:

28 :a)n\/l_zé/2

Magnitude ratio M(w)

« Systems with damping
ratio greater than 0.7
do not resonate

* Resonance is excited by a periodic input signal

« The peak gain occurs slightly below the system resonance due to
damping

« Operating an underdamped systems at resonance can cause
serious damage — Tacoma Narrows bridge

1 1
w

ALl
o

-15

49
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Phase Shift in the Resonance Band

Phase shift [°] ¢(w)

OBSERVATIONS
— o/ o =1
* Phase shift jumps to —11

* The lower the damping ratio, the more sudden the jump

50



Pragmatic Interpretation

» |deally system should
have:

» Linear frequency response
across all ranges

» With zero phase shift
» Real world

» We must use an instrument
over it's linear range where
» Response is flat
» Phase shift predictable
» Some compensation is also

possible using electronic
methods

Magnitude ratio M{w)

Phase shift [°] ¢(w)

-100

-120

-140

-160

-40

-60

-80

-180 gl M=

0.05

0.10

0.20

L 1
0.50

1
1.0
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Theoretical 2" Order Response

Steady state response to sinusoid input

Ysteaay (1) = B(@) sin[ ot + D(@)]

Frequency Dependent Phase Shift

2-(w/w,)
1-(w/®,)

D (w)=—tan"

Frequency Magnitude Ratio

|
Jll=(@/ 0, +(2lw/ o, )’

M(w) =

B(w) is Amplitude

As a/w, becomes large:

®(w) approaches 1T

As a/w, becomes large:

M(w) approaches zero

52



Multiple-Function Inputs

* When models are used that are linear.
ordinary differential equations subjected to
inputs that are linear in terms of the
dependent variable, the principle of
superposition of linear systems will apply
to the solution of these equations.

53



Principle of Superposition

* The theory of superposition states that a
linear combination of input signals applied
to a linear measurement system produces
an output signal that 1s stmply the linear
addition of the separate output signals that
would result 1f each mput term had been
applied separately.

54



Principle of Superposition
* The forcing function of a form:

F()=4,+ z (A4 sinayt)

. . i—1 .
1s applied to a system, then the combined steady
response wﬂl have the form:

KA, + ZB(m )sin[@ .t + ¢(w,)]

n=1

Where B(®,)=KAM(®;)

55



Coupled Systems

 When a measurement system consists of
more than one instrument, the
measurement system behavior can become
more complicated.

» As instruments in each stage of the system
are connected, the output from one stage
becomes the input to the next stage and so

forth.

56



Coupled Systems

» Such measurement systems will have an output
response to the original input signal that 1s some
combination of the individual instrument
responses to the mput.

» The system concepts of zero-, first-, and second-
order systems studied previously can be used for a
case-by-case study of the coupled measurement
system.

* This 1s done by considering the input to each stage
of the measurement system as the output of the
previous stage.

57
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(&) Equivalent system transfer function
Figure 3.24 Coupled systems, describing the system transfer function.
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Coupled Systems

* The previous slide depicts a measurement
system consisting of H interconnected
devices, 1 =1, 2, ..., H, each device
described by a linear system model.

Coupled Systems

* The overall transfer function of the
combined system, G(s), will be the product
of the transfer functions of each of the
individual devices, G;(s), such that:

KG(s) = K,G,(5)K,G(s).. KsGie(S)

* The overall system static sensitivity 1s
described by:

K =K,KK;.. Ky



Coupled Systems

* The overall system magnitude ratio will be
the product:
M(®) = M,(®)M,(®).. My(o)

* The overall system phase shift will be the
sum:

O(®) = ¢, (®) + Oy(®) +...+ Oy(O)

60



Chapter 4

Probability And
Statistics



Probability And Statistics

Engineering measurements taken repeatedly under
seemingly ideal conditions will normally show
variability.

Measurement system
— Resolution
— Repeatability

Measurement procedure and technique

— Repeatability

62



Probability And Statistics

Measured variable
— Temporal variation
— Spatial variation
We want:

1. A single representative value that best
characterizes the average of the data set.

2. A measure of the variation in a measured
data set.
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Random Variables

Say you have a velocity probe that you can put into a turbulent flow.
You know that turbulent flows are characterized by random fluctuations
in velocity. So, even though you may have the wind tunnel speed fixed,
and nothing else 1s changing, every time you sample the velocity signal,
you get a different reading.

o 3T
There are three things you need to describe a random variable
statistically: 1) The average value, 2) some description of the size of
the variations and 3) what type of distribution. o



Probability And Statistics

We define x’ to be the true mean value of the random
variable x. With a finite number of samples, we will never

know the value of x’ exactly, but we will learn ways to
estimate it.

True value is represented by X'= X +u

X = most probable estimate of X

u, = confidence interval at probability P%
which is based on estimates of precision
and bias error.

65



Random Variables

We are going to concentrate on random variables that have what 1s
known as central tendency, which means that if you take a bunch of
samples, many of them will collect near a single value. You can see
central tendency if you plot the data in question on a histogram.

20 e
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Probability Density Function

If we have a histogram plot, and we let the
number of data points go to infinity while the size
of the bins goes to zero, we get a “probability
density function”

n.
— : J
P(x) = N—}oﬁg}—m N (25)()

67



Probability And Statistics

Probability Density Function

Central Tendency — says that there is one central
value about which all other values tend to be
scattered.

Probability Density — the frequency with which the
measured variable takes on a value within a
given interval.

The region where observations tend to gather is around the
central value.

68



Probability Density Functions
Examples: (see Table 4.2)

* Normal (Gaussian, bell
curve) - Describes almost px)
anything real if you take
enough data

 Poisson - Describes events
occurring randomly 1n time
(e.g. radioactive decay)

5 el
' e ]
Vs g TRk 'h.kiﬂw 69



For a Normal Distribution
the pdf is given by

plx)

1 1 (x=x')’
p(x) = 0(272_)1/2 eXp{ 7 S }
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Mean and Variance

* No matter which distribution you have, the mean value (central
tendency) i1s given by

0= lim— j X(t)

 And the variance 1s

T

| 2
2 =1lim— | [x(t)- x"Tdt
d TlinooT'([[() ]

* For infinite discrete series, these are
N

|
X'= lim — ZX Gzzhm_Z[Xi_X']Z

N—eo [\ 2 N=e N
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Mean and Variance

« A fundamental difficulty arises in the definitions
given by the equations earlier, in that they assume an
infinite number of measurements

« What if the data set 1s finite ?

 We will look 1nto the connection between probability
and statistics and then into the practical treatment of
finite sets of data

72



Probability & Statistics

» Probability theory examines the properties of random
variables, using the ideas of random variables,
probability and probability distributions.

» Statistical measurement theory (and practice) uses
probability theory to answer concrete questions about
accuracy limits, whether two samples belong to the
same population, etc.

» “The analysis of data inevitably involves some trafficking
with the field of statistics, that gray area which is not quite a
branch of mathematics — and just as surely not quite a

branch of science.” [H. Press et. al., Numerical Recipes, Cambridge
Univ. Press, Chap. 14]

/1D



Probability & Statistics

» To find the interval in which the measurand
value will fall under given experimental
conditions we need to sort out few background
ideas first

» A good start is to clarify the relationship
between probability theory and statistical
measurement theory

74



Probability And Statistics

Plotting Histograms

* The abscissa is divided in K small intervals
between the minimum and maximum values.

¢ The abscissa will be divided between the
maximum and minimum measured values of x into
K small intervals.

¢ Let the number of times, nj, that a measured
value assumes a value within an interval defined
by x-0x < X <x+0X be plotted on the ordinate.

¢ For small N, K should be chosen so that n, = 5 for
at least one interval.
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Probability And Statistics

Plotting Histograms

¢ For N>40 ; K=1.87(N-1)040+]

¢ The histogram displays the tendency and
density.

¢ |f the y-axis is normalized by dividing
nI/N, a frequency distribution results.

See Example 4.1 page 112
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Having a set of repeated measurement
data, we want to know how to:

Find the best estimate for the measured
variable (the measurand)

Find the best estimate for the measurand
variability
Find the /nfterval in which the measurand

value will fall under given experimental
conditions

77



Example: Consider the Wind speed data:

Wind Running Wind Running Wind Running Wind Running
Sample # Speed average Sample # speed average Sample # speed average Sample # speed average
data data data data

1 11.5365| 11.5365 26 16.1416| 12.6104 51 16.9181 12.5474 76 7.1871 12.0829
2 9.2332| 10.3849 27 12.9392| 12.6226 52 15.3221 12.6008 77 11.9689 12.0814
3 12.9846| 11.2515 28 14.5035| 12.6898 53 12.6510| 12.6017 78 15.3700| 12.1236
4 18.7957| 13.1375 29 7.3669| 12.5062 54 5.3269| 12.4670 79 8.4892| 12.0776
5 8.5051 12.2110 30 11.1278| 12.4603 55 11.8757| 12.4563 80 10.8533| 12.0623
6 12.3544| 12.2349 31 8.6197| 12.3364 56 14.2836| 12.4889 81 15.8850| 12.1095
7 15.8414| 12.7501 32 7.4469| 12.1836 57 11.2585 12.4673 82 11.4947 12.1020
8 8.7258| 12.2471 33 10.4165| 12.1300 58 13.1818| 12.4796 83 7.3016) 12.0441
9 11.9886| 12.2184 34 10.9251 12.0946 59 7.8915| 12.4019 84 13.7059| 12.0639
10 14.5874| 12.4553 35 14.0136| 12.1494 60 6.4132| 12.3020 85 7.8833| 12.0147
11 11.0471 12.3272 36 14.2179| 12.2069 61 12.5804| 12.3066 86 13.0810| 12.0271
12 13.6365| 12.4363 37 16.3352| 12.3185 62 17.2129| 12.3857 87 11.4623| 12.0206
13 12.3296| 12.4281 38 17.0296| 12.4424 63 14.0680 12.4124 88 15.0626| 12.0552
14 90.1848| 12.1965 39 11.4896| 12.4180 64 7.0001 12.3279 89 10.4630( 12.0373
15 11.6655| 12.1611 40 13.3769| 12.4420 65 8.2330| 12.2649 90 8.6416| 11.9996
16 14.7416| 12.3224 41 10.3996| 12.3922 66 13.4989| 12.2836 91 12.3941 12.0039
17 11.4189| 12.2692 42 13.3815| 12.4157 67 11.7140| 12.2751 92 12.4995| 12.0093
18 7.3487| 11.9958 43 11.3415| 12.3907 68 13.1620| 12.2881 93 9.9212| 11.9869
19 13.5740{ 12.0789 44 10.2202| 12.3414 69 14.5516 12.3209 94 15.9513| 12.0290
20 16.6338| 12.3067 45 15.3365| 12.4080 70 6.4819| 12.2375 95 14.1887 12.0518
21 14.6856| 12.4199 46 15.4909| 12.4750 71 10.1296| 12.2078 96 10.7504| 12.0382
22 13.7430| 12.4801 47 6.2576| 12.3427 72 10.8048| 12.1883 97 12.5755| 12.0437
23 18.4066| 12.7378 48 16.7661 12.4348 73 12.8268| 12.1971 98 10.0896| 12.0238
24 6.2973| 12.4694 49 15.1833| 12.4909 74 10.4948| 12.1741 99 14.0007| 12.0438
25 12.4632| 12.4692 50 10.9444| 12.4600 75 10.2319| 12.1482 100 16.6868| 12.0902
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Speed [m/s]

Let's plot them first:

Wind speed data series

N
o

_ = = -
N O O
I I I I

—

0
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20 30 40 50 60
Sample #

/0 80 90 100

¢ \Wind speed data
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Speed [m/s]

ook at another data set:

Another wind speed data series

Sample #

A Another wind data

A
A
A A
A A A‘ A A A
A A A y
A A A A A A A A A
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i A A A A
F Y A A F Y A
] A A A A
A A
A A
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O 10 20 30 40 50 60 70 80 90 100
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What can we conclude?

» First data set exhibits central tendency

Wind speed data series
20
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* Wind speed data

Second data set exhibits trend

Another wind speed data series
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_ Wind speed data series
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. + Wind speed data
On the first set:

» The data points seem to oscillate around 12 or 13 or
close to that

» The data points lie between 6 and 19 approximately
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Next, we can make a histogram

Histogram Histogram Histogram

Frequency

6 10 14 18 More

Which one is the right one?

Number of bins, K= 1.87(N-1)04 + 1 (Eq. 4.2) pg. 111
For our data, N=100, K=13
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Next, we can make a histogram

Histogram

6 10 14 18 More
Bin

Histogram

Histogram

Which one is the right one?

Number of bins, K= 1.87(N-1)%4 + 1
For our data, N=100, K=13

(Eq. 4.2) pg. 111
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Let’'s have a look at yet another data set:

Sample #| Value Running Sample #| Value Running Sample #| Value Running Sample #| Value Running
average average average average

1 3| 3.0000 26 3| 4.6538 51 0 4.8431 76 6| 4.8158
2 1 2.0000 27 8| 4.7778 52 5| 4.8462 77 2| 47792
3 4 2.6667 28 3| 4.7143 53 8| 4.9057 78 0 4.7179
4 1 2.2500 29 2| 4.6207 54 2[ 4.8519 79 8| 4.7595
5 5 2.8000 30 7| 4.7000 55 0| 4.7636 80 9] 4.8125
6 9] 3.8333 31 9| 4.8387 56 9] 4.8393 81 9] 4.8642
7 2 3.5714 32 5 4.8438 57 7| 4.8772 82 8| 4.9024
8 6/ 3.8750 33 0| 4.6970 58 4 4.8621 83 6| 4.9157
9 5 4.0000 34 2| 4.6176 59 9 4.9322 84 2| 4.8810
10 3| 3.9000 35 8| 4.7143 60 4 4.9167 85 8| 4.9176
11 5 4.0000 36 8| 4.8056 61 4 4.9016 86 0| 4.8605
12 8| 4.3333 37 4| 4.7838 62 5 4.9032 87 3| 4.8391
13 9] 4.6923 38 1 4.6842 63 9] 4.9683 88 4| 4.8295
14 7| 4.8571 39 9| 4.7949 64 2[ 4.9219 89 8| 4.8652
15 9] 5.1333 40 7| 4.8500 65 3| 4.8923 90 2| 4.8333
16 3| 5.0000 41 1 4.7561 66 0| 4.8182 91 5 4.8352
17 2 4.8235 42 6| 4.7857 67 7 4.8507 92 3| 4.8152
18 3| 4.7222 43 9 4.8837 68 8| 4.8971 93 4| 4.8065
19 8| 4.8947 44 3| 4.8409 69 1 4.8406 94 2| 4.7766
20 4 4.8500 45 9| 4.9333 70 6] 4.8571 95 1 4.7368
21 6 4.9048 46 9 5.0217 71 4| 4.8451 96 1 4.6979
22 2| 47727 47 3| 4.9787 72 0| 4.7778 97 7] 4.7216
23 6] 4.8261 48 7| 5.0208 73 6| 4.7945 98 0| 4.6735
24 4 4.7917 49 5| 5.0204 74 2| 4.7568 99 6| 4.6869
25 3| 4.7200 50 1 4.9400 75 8| 4.8000] 100 7|  4.7100
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And plot the data...

Single digit series
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And make a histogram:

Histogram

/Hlstogram

®» 3 B ® 3 ®
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Let's compare the two histograms

Histogram

_ A A

Frequency
o NN B O ©o o N B D

3 B ® 3 @

Histogram

Bin

Wind speed data

Second data set
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1.

Answer to Question 1:

o find the best estimate for the
measured variable (the measurand)

Use the mean value!

_ 1 &
X=N2Xi

1
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Answer to Question 2:

2. To find the best estimate for the
measurand variability

1 N
Use the Sample variance  S; = N—Z:(xi — X

Or the Sample standard deviation S, =+/S;
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How do we add up sample means,
variances and standard deviations?

let X=a+b Then,

; — a + 6 Means add up

Sf = Sj + sz Variances add up

S, = \/Sj +S; Standard deviations don’t simply
add up

Provided that a and b are uncorrelated!
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A bathroom scale example

» A series of 100 weight measurements
were performed on a (badly tuned)
bathroom scale. A weight of 50 Ib was
repeatedly measured by a class in 1996.
10 groups made 10 measurements each.

» The raw data with running average is
shown in the following figure.
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Weight [Ib]
a0 -
A0 7 . hat S s, *e o P -
Wﬁ*wwﬁﬁﬁm' ha A2 L N +1‘_*
- *
30 + . ¢ - * *
+. @ &
20 - *
10
O - - | i . | '
0 10 20 30 40 a0 B0 70 80 S0 100
Measurement no.
‘ + Single points —— REunning average — - - - True value

A series of 100 weight measurements

(Running average at point j is an average of points from 1to /)
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Some initial
observations

30+

» The data scatter varies
from group to group (i.e.

the ranges 31-40, 41-50
and 51-60 are notably
more uniform).

» Although the data scatter is considerable, the running
average quickly converges to a stable value (central
tendency).

» Data points tend to cluster closer to the upper limit of
the data range.

» The true value is outside the data scatter, indicating
heavy bias.

» The bias is negative.

‘ + Single points —— Running average — - - - TrUe value‘
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04

Next we s
examine
the histogram
o= 1l

206 2268 245 265 28468 305 325 345 365 3845 405 425
Sam ple weight

» The histogram confirms that the data
are skewed towards upper limit.

» The histogram gives an intuitive idea of
a probability distribution, but we cannot
refine it much more.
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A different -

route 5o

o
Sp025

mber o

Relative n

0

a 10 20 30 40 a0 60
Weight threshold [lh]

Sample cumulative distribution

» The sample cumulative distribution is much
smoother and does not require the selection of
bins and the distribution of data into them. A

smooth curve is easy to fit through the sample
(staircase) curve.
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he probability distribution

= = F =Curnulative distribution of x

-0.2

fix) = Frobabilty denstty function

dF(x)
dx

f(X)= and F(x)= j f (X)dx

P(a< x<h)=F(b)-F(a) =j f (x)dx

97




The Probability Density Function

P(x) comes from the frequency distribution
P(x)= lm (n)/(N2&))

N o de— 0
- Defines the probability that a measured variable
might assume a particular value on any given
observation, and also provides the central

tendency

- The shape depends on the variable in
consideration and its natural
ci rcumsmnces/processes.

- Plot histograms — compare to common distribution|
and then fit the parameter.

- Unifit is a good PC-based distribution fitting
software.
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The Probability Density Function

TABLE 4.1 Sample of Variable x
I X i o X,
1 0,95 11 : V.02
2 1007 12 - 1,26
K [L&G 13 L.0%
4 1. 16 14 .02
5 IR 13 (3.94
3 (h65 & 1.11
7 .54 17 (L
¥ 1.04 4 L
u 1.21 |4 | (6
11 (r MG 20 .05
FIGURE 4.1 Concept of density in reference W a measured 1, d
vartable {from Example 4.1). More dense E 85 HISE]
| & | L |l & | L & | | =
.65 .75 .85 (.95 1.05 1.15 1.25 1.35 145 X
t Range ?
K small intervals reguared [or a viable stanstical analyss is found trom
K=187IN= 1"+ 7.2 5 for il leust one interval | (4.2)
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Infinite Statistics

* In a perfect world, we have an infinite number of data points.
In reality, this is not the case, but for now, we assume it is.

* If we wish to know the probability of x taking on some range
of values,we simply integrate the pdf over that range:

P(X'—=0X < X < X'+0X) = fp(x)dx
OX

X'—
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Infinite Statistics

 If we know what type of distribution we have and we know X’ and
o, then we know p(x) and we could perform the integral.

* We can make the integral easier by transforming the variables a
little bit.

* Make z, =(X;-X’)/ oand 3 = (X- X’)/ ©-

 Put in the normal distribution for P(x) and get:

P(-z, < B< zl)_(2 7 ) fe-ﬁ *dp
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Infinite Statistics

The most common distribution is the normal or
Gaussian distribution. This predicts that the
distribution will be evenly distributed
around the central tendency. (“bell curve”)

plx)
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Infinite Statistics

Te‘ﬂz/zdﬂ

P(-z,<fp<z)= (27[)1/2

= Since the gaussian distribution is symmetric about X’, we can
write this as

P(-z,<f<12)=2

= The term in the brackets is called the error function. You have
probably seen it before, you certainly will again, and now you
know why they call it that.
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Probability Density Function and
Probability

1 ' “pE . L
I — Cx hl — 1 o ': A i X
ﬁ n Bl . -E
i, 10)]
1R becomes L

Pz SPEg)e—— j L 41 %\‘:ﬁ

[E-Tl:_l' 2 ' : \ %

al distribation. Wx) i3 svmmelnical about ¥, ane can write k:.“

_..1 ~ j” E—Sz'_" l!'-"ﬂ = I J.:{,-I""-'A fﬂi (412 / ;
f2m" . (2my = dy J ' - DE'- - N

104



Probability values for Normal Error

Functions
Table 4.2
: : 1 z' -B%/2
One-Sided Integral Solutions for p(z;) = 2m) /ﬂ ¢ 2288
s *"*;x 000 001 002 003 004 005
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987
0.3 0.1179 01217 0.1255 0.1293 0.1331 0.1368
0.4 0.1554 01591 0.1628 0.1664 0.1700 0.1736
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.208
02257 02291 02324 02357 02389 02

0.6

= _——

L T e LS
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Normal or Gaussian Distribution

1 ]‘ i plx) \

P —Z S S L. )= e p /2d . '
(-2, <f=1) )" b p X — X
O
See Table 4.2 pg,.
114 for other types e 68.27% —»
of distributions
i 95.45%
Ir:/'/ 99.%3% \\_1
x'-3¢ x'-20 x' -0 x' x'+o0 x'+20 x'+ 30 3:
z=-3 z=-2 z7=-1 z=0 z=1 z2=2 z=3

Note: p(x) is the “probability density of x”

106



Gaussian Distribution Highlights

We expect that measurements will show
Gaussian distributed deviations due to random
variations.

+ One standard deviation contains 68.3% of data.
+ Two standard deviations contain 95.5% of data.

+ Three standard deviations contain 99.7% of
data.

plx) A

/N

/—-—6827%—-\

/ 95.45% -\
1
99.73% ‘
x' o x x'+o0o x+




Normal or Gaussian Distribution

Solutions given for this in table 4.3

For z=1, 68.2/7/% of observations
within 1 standard deviation of

X

For z=2, 95.45%
For z=3, 99.73%

The values of z in table 4.3 can be
used to predict probability of a

unique value occurring in an
infinite data set.

plx) A

/N

/-—682?%—-\

95.45%

[
99.73%
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Normal or Gaussian Distribution

¢ Pdf for Gaussian:

p(x)=1/(v(2m)"Zexp [(-1/2)((x-x')*/0?)]

x’= true mean of x ; G2 = true variance of
X

* To find /predict the probability that a future
measurement falls within some interval.
Probability P(x) is the area under the curve
between X’+0x on p(x)
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Normal Error Function Table

Table 4.3 Probability Values for Normal Error Function

One-Sided Integral Solutions for p(z;) =

1

1
f e P72dp
0

(2m)i2
7= al S u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.0000  0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179  0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 03438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 04115 0.4131 0.4147 04162 0.4177
1.4 0.4192 0.4207 04222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 04370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452  0.4463 0.4474 0.4484 0.4495 04505 0.4515 0.4525 0.4535 0.4545
17 N AKKA N AKAA N ALT72 n AZQM N ALO1 N AZ00 N A£ZNQ N AL1 &£ N A£N& N A&2"2
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Normal or Gaussian Distribution
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Finite Statistics

* When ‘N is finite (less than infinity) all of the characteris-
tics of a measured value may not be contained in ‘N’ data
points

- Statistical values obtained from finite data sets should be
considered only a estimates of the true statistics

e Such statistics is called “Finite Statistics”

« Whereas the true behavior of a variable is described by
its infinite statistics, finite statistics only describe the
behavior of the finite data set
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Finite Statistics

When N<<0, we do not have true representation
of the population. We have finite statistics which
describe the sample and estimate the population.

Sample mean

(probable estimate of true mean)

N
x=1/ND xi (4.14a)
1=1

(measurement of

. ‘N —
Sample variance S.f =1/(N - UZ (xi— x)?
i=1

precision)

(4.14b)
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Finite Statistics

Deviation of x::

X —-X

]

Sample standard deviation: Sy = 4/ S

X

Degree of freedom: the number of samples less the

central tendency measurement (N-1)
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t-estimate

o For a finite data set, we use the t-estimate

instead of z, which was used in the infinite.

¢ One can state that B (P%)
Xi=XXThpSx (4.15)

T 1. p Sx represents the precision interval

P% = probability
v = degrees of freedom

X = sample mean
Table 4.4 gives “t” distribution
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Student-t Distribution — Table 4.4 in the text

Table 4.4 Student-r Distribution 3
% tw teo fas Iy
1 1.000 6.314 12.706 63.657
2 0.816 2.920 4303 9.925
3 0.765 2.353 3.182 5.841
4 0.741 2132 2.770 4.604
5 0.727 2.015 2.571 4.032
6 0.718 1.943 2.447 3.707
7 0.711 1.895 2.365 3.499
X 0.706 1.860 2.306 3355
9 0.703 1.833 2.262 3.250
10 0.700 1.812 2.228 3.169
11 0.697 1.796 2.201 3.106
12 0.695 1.782 2.179 3.055
13 0.694 1.771 2.160 3.012
14 0.692 1.761 2.145

15 0.691 1.753 2131




Finite Statistics - .
Student’s t-distribution x=1/N2 x (414a)

1=1

f 1/ (N —I)Z(I .1* )?

=z
Il

234N
3,25l
3014
3. 1A
’il'ﬁ‘i

A‘l 30, P { v=2 [ =0.703 '_i =)0

and v{p =0, t =0703 =9
v, P, t are related



If we know the true standard deviation

= We express the range of possible measurand values as
a confidence interval, given at a certain confidence level.

X'=X*U, (P%)
= [f we know the true standard deviation, o, then
X'=Xt2z,0. =x+0.670.  (50%)
X'=X*27,0.=x+1.960.  (95%)

X'=X*2,0.=x+2.580  (99%)

Z,s is the value of z for which P(0 <z < z,,) = % =0.475

= The probability that the i " measured value of x will have a value

between x' + 7,5, is 2P(z;) x 100 = P% 118



If we don’t know the true standard
deviation

» We use the sample standard deviation, S,,
but we pay the “penalty”:

X'=X*t,,S. =x£0.692S.  (50%),v =14

X'=X*t,,S. =x+£2.1455.  (95%),v =14

X'=X*t, 5. =x£2.977S.  (99%),v =14
t,405 18 the value of t for v =14 and P = 95%, table 4.4

Note: The figures above are an example for the sample size
of N = 15 samples, with v= N-1 = 14 degrees of freedom.
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How do the true and sample standard

deviations of the mean depend on the

sample size?

O- = Ox . S- = >, thus
X /N ? X /N ?
— o
X'=X*z,—= 1f o, 1s known, or
N X
S

X'=xXzxt,_, ,—= 1f o, 1s not known
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Standard Deviation of the Means

If we measure a variable N times under fixed
conditions, and replicate this M times, we will end
up with slightly different means for each
replication.

't can be shown that regardless of the form of the
pdf of the individualized replication, the mean
values themselves will be normally distributed.
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Standard Deviation of the Means

(P%)
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Example for small samples

» A Micrometer is calibrated to eliminate bias errors

» Four independent measurements of shaft diameter are
made: 25.04, 24.91, 24.98, 25.06 mm

» What is the uncertainty associated with the
measurements in this application?

» Variations are partly due to the measurement process,
partly due to real variation in the shaft diameter.
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Sample Statistics (Example)

X = ﬁin =24.9975 mm

S, = ﬁZ(Xi ~X)" =0.0675 mm

Degrees of freedom, v=N-1=3
t; 95 = 3.182 from Table 4.4

Our uncertainty is about 1.5 times larger because of
the small sample (3.182 vs 1.96)

1.96 is the value for f; o5 at N = infinity
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Mean of four measurements

=3.182 0.0675 =0.107 mm~0.11 mm

S
i X _
395" TN N

= The mean diameter of the shaft is 25.00 mm
+0.11 mm at 95% confidence level.
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An additional measurement

= |f we now make a single measurement on
another shaft and get 24.90 mm, then

t,0sS, = 3.182x0.0675=0.215

= The diameter of that shaft at that location is

D=2490 mm £0.22mm  (95%).
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Pooled Statistics

= This section just states that 1f you perform M separate 1dentical
experiments, each consisting of N samples, you will get the same
statistics as if you had a single experiment with M x N
measurements (seems pretty obvious ?)

¢ Samples that are grouped 1n a manner so as
to determine a common set of statistics are

called pooled.

+ If we have M replicates of variable x, with
N repeated measurements producing data
setx;;1=1toN;j=1toM
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Pooled Statistics

¢ Pooled mean of x:

5)=1/MNE T

=1 1=l

¢ Pooled standard deviation of x:

(sx) = \/[1--(M<N— D) D (x5-xi)°]

=1 i=1

\ = (with v=M(N-1) degrees of freedom)
¢ Pooled standard deviation of means:

(sx) = (sx)/ (MN)"?
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Chi-Squared Distribution (ki-squared)

If we were to repeat our N measurements a few times, we would
compute a different estimate of the standard deviation S, each time.
(Remember that we said the same thing about the mean). There is a
distribution (pdf) of the variance of measurements of a gaussian
(normal) process, and it is called Chi-Squared.

;(2:1/8)%/02,
y=N -1




Chi-Squared Distribution

¢ Estimates the precision by which s,
predicts 6.
* s = sample variance ; 6> = population variance
¢+ If we plotted s, for many sets having N
samples each, we would generate the pdf
for P(?) (chi-squared)

¢ For a normal distribution chi-squared

y2=v(sk/6%2) v=N-1
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Chi-Squared Distribution

Figure 4.7 The x* distribution with its dependency on degrees
of freedom.
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Chi-Squared Distribution

Precision Interval in Sample

Variance
*The precision interval for the sample
variance can be formulated by the probability
statement:

P12 _upn SP< 0 %0n)=1-0
with a probability of P(y2)=1- o ;
o = level of significance
Combining:
Plvs/ 12, S02<vsd /1%, ]=1-0
For 95% precision mterval by which s_? estumates G2

- 2 -
VSx®/ %2025 < G < VS® /Y% 975
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Chi-Squared Distribution

Precision Interval in Sample
Variance

¢ The y? distribution estimates the
discrepancy expected as a result of random
chance.

* Values for 1 are tabulated in Table 4.5 as
a function of the degrees of freedom.

¢ The P(y?) value equals the area under p(y?)

as measured from the left, and the a value
1s the area as measured from the right.

¢ The total area under p(?) is equal to unity.
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Chi-Squared Distribution

e

12

Figure 4.8 The x* distribution as it relates to probability P and to
the level of significance, a{=1- P).
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Chi-Squared Distribution

Values for 7.

v Xd o I&m Xaos Xds0 Inl_-w Iciuﬁ K&m 1-:-.
1 0.000 0,000 0.000 0.016 0.455 3.84 5.02 6.63
2 0,020 0.051 0.103 0.211 1.39 599 738 9.
3 0.115 0216 0.352 0.584 237 7.81 9.35 113
4 0.297 0.484 0.711 1.06 336 9.49 11.1 133
5 0.554 0.831 1.15 1.61 4.35 11.1 128 15.1
5 0872 1.24 1.64 2.20 535 126 144 16.8
7 1.24 1.69 217 253 6.35 14.1 16.0 185
i 1.65 218 2.73 3.49 7.34 155 175 201
) ) 209 270 333 4.17 834 16.9 19.0 21.7
) 2.56 3.25 3.94 4.78 9.34 183 205 212
1 3.05 3.82 4.57 5.58 103 19.7 219 247
2 157 4.40 513 6.30 113 21.0 233 26.2
3 411 5.01 5.89 7.04 12.3 224 247 2.7
4 4.66 5.63 6.57 1.79 133 23.7 26.1 20.1
h] 523 6.26 7.26 8.55 14.3 250 27.5 30.6
& 581 6.91 7.96 9.31 153 263 288 32.0
7 6.41 7.56 8.67 10.1 163 27.6 30.2 334
.4 T7.01 B3 0.39 10.9 173 2890 ns 348 |
9 7.63 8.91 10.1 11.7 183 30.1 329 36.2
0 8.26 9.59 10.9 124 193 34 342 376
i 15.0 16.8 18.5 20.6 29.3 438 47.0 50.9
0 3.5 40.5 432 46.5 59.3 791 £33 BR.4
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Goodness of Fit Test

+ We can use a chi-squared test to determine how good of a
fit our selected pdf represents the actual distribution of
data.

+ The y? test gives us the measure of error between the
variation in the data set and variation predicted by the
assumed pdf.

+ Construct histogram of data and histogram from predicted
pdf. where n, 1s actual and n’; 1s predicted number of
occurrences per cell. Then:

K
12= > (nj-n'j))*/n

=1

For given d.o.f. the better fit gives lower y?
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Goodness of Fit Test

¢ The j(i table, given in the previous slide,
can be interpreted as a measure of the
discrepancy expected as a result of random
chance.

¢ For example, a value for o of 0.95 implies
that 95% of the discrepancy between the
histogram and the assumed distribution 1s
due to random variation only.

¢ With P(y?%) =1 - a, this leaves only 5% of
the discrepancy caused by a systematic
tendency, such as different distribution.

¢ In general, a P(%?) < 0.05 confers a very
strong measure of a good fit to the assumed

distribution, an unequivocal result. 1



Goodness of Fit Test

We are going to assume that our data fits a normal
(gaussian) distribution. If we have a set of data
and we want to make sure this 1s a good fit, we use
this test.

15 |

2

2 o

(=)
Z—Zj: —

J
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Goodness of Fit Test

Thermo Il 2002

N, =P03<x<04)=P(03<x,<0.62)-P (0.4<x,<0.62)
= P(z,) - P(zy)
Recall thatz, = (X,-X’) / o
= P(-2.26) — P(-1.55) = 0.4881 - 0.4394
=0.0487, or 4.9%
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Probability in a band
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Reqgression Analysis
A

— m
Ye=@p+ax+ - +a,x

—--—5?(.'()_,” +1 \ / E—

y(.fz}

Dependent variable (measurand) y

—?(Il)

0 X X5
Independent variable, x

Used to determine the functional form of data. Often, we will know
from some theory that y = AeBX, but we may not know what A and B
are. A regression analysis can find the best guess for A and B. This
type of analysis can be done for any y = f(X) (your book incorrectly

says that 1t 1s limited to polynomials).
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Least-Squares Regression

Generally, we will assume that our data represents some function

y = f(x; a, b, ...) where a and b are the coefficients to be determined.
This technique tries to minimize (Least) the square of the difference
(squares) between the data and the assumed function. It will
calculate the values of a, b,.... that do this. If the assumed function
is linear in a, b, ...., then this method can do it in one shot. If not, it
will iterate starting with 1nitial guesses for all of the parameters.

I am not interested 1in you understanding the nuts and bolts of this
technique. You can get the subroutines from Numerical Recipes or
use a graphing package like Kaleidagraph. I do want you to
understand the application and limits of the technique.
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Curve Fitting Examples
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Number of Measurements Required

Again, the books discussion on this topic 1s confusing since it uses a
t-estimator. There 1s nothing wrong with this approach, but it 1s
perhaps easier to understand using infinite statistics. Say we have a
measurement of some random data, and we want to know 1ts mean
with an error smaller than 5%. If we have some estimate of its

standard deviation, then we know that g
_ X
SY - N 1/2
The above statement says that we want Sy to be less than 5% of X
_ S,
0.05=S;/X= —E

S 2
OOOSX
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Required Samples

But how do we know S,?

0.08 - g
ey = 0 R
O-u2/U2 {%l : ﬁ?j_l
0.04 2 E”r
I ¥ ir'
d e
;- Ay
"“'* i:%l:ﬂ'r =
|:| Ll | |
-2 0 2
2 yih
X%U
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