Reptilian blood-collecting techniques have been reviewed by Coulson and Hernandez (1964), Kaplan (1968), Dessauer (1970), and Olson et al., (1975). Such techniques include cardiac puncture on turtles (Gandal, 1958), snakes (Sooter, 1955), alligators (Coulson and Hernandez, 1964), and lizards (Dawson, 1960). Venipuncture has also been used successfully on these animals (Kaplan, 1968; Olson, et al., 1975). Decapitation has been used extensively to collect blood from snakes and lizards (Hutton, 1958; Dessauer, et al., 1962). Small quantities of blood have been collected by cutting off the tip of the tails of snakes and alligators (Coulson and Hernandez, 1964). In addition, chronic venous cannulation has been utilized for certain large lizards (Tucker, 1966). More recently, the retro-orbital bleeding technique (MacLean, et al., 1973) has been used to collect small quantities of blood from lizards.

Increased interest in reptilian physiology has emphasized the importance of collecting significant quantities of blood and other fluids, even from the smaller species. The following technique involves the severance of the caudal artery and/or vein with subsequent blood gathering, and allows for adequate sample volume with minimal damage to the specimen.

During blood collection, lizards are grasped at the base of the tail with the thumb and forefinger, while keeping the legs restrained from the area to be incised. A 10–15 mm midventral incision is made just posterior to the vent using the corner of a sharp razor blade (Fig. 1B) while applying moderate pressure to the sides of the tail. The incision is then deepened by cutting to the vertebral column, thus severing the caudal artery and vein. By releasing pressure on the sides of the tail the maximum amount of free-flowing blood accumulates and is collected using a heparinized transfer pipette and bulb (Fig. 1C & 1D). The extracted blood is then placed in a small glass tube (10 × 75 mm), stoppered, and chilled on ice. Blood was taken from 178 Cnemidophorus sexlineatus collected in east-central Alabama, from July, 1978 to March, 1979, using this method. Lizards were weighed and blood volumes were recorded. Body weight ranged from 6.2 to 17.5 g (x = 10.2 g).

Blood sample volume (μl) and body weight (g) were found to be linearly related (approximately 32 μl of blood collected per gram of body weight) based on regression analysis. The equation of the line of best fit for these 178 data points could be stated: Y = 3.38 + 31.84X.
ACKNOWLEDGMENTS—The authors are grateful to R. E. Mirarchi and R. H. Katai for their review of the manuscript. Part of this work was supported by Auburn University grant-in-aid.

DEFINITIONS—The term "bile ducts" is used in this study to refer to the small bile ducts located in the liver parenchyma, which do not terminate in the gallbladder. The term "bile" is used to refer to the fluid secreted by the liver into the bile ducts and containing bile pigments and bile salts. The term "liver" is used to refer to the organ in the body that produces bile and is involved in the metabolism and detoxification of various substances.

This study was supported by a grant from the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases (1 R01 DK40270-01).
Sound production by lacertilians is a relatively rare phenomenon. It appears to be most common in the family Gekkonidae, but also has been reported for the families Anguidae (Wylie, 1949), Iguanidae (Smith, 1974; Wever, Hepp-Reymond, and Vernon, 1966), and Lacertidae (Falck, 1953). Frankenberg (1974) analyzed aspects of vocalizations in the Gekkonidae.

While collecting lizards near Notrees, Texas, I noticed that *Cnemidophorus gularis* occasionally emitted a short, high pitched monosyllabic squeak. This occurred particularly when the animal was being removed from a noose or was being handled. The squeak was not the result of squeezing the lizard during noosing or handling, but did seem to result from disturbing the animal. No equipment was available in the field to record the sounds.

The animals were returned to the laboratory and later were used for thermoregulation experiments in a thermal gradient. During these experiments the lizards had thermistors inserted into their cloacas with the lead wires taped to their tails. On one occasion, a lizard became entangled in the lead wires and emitted a squeak. I then found that by disturbing the lizards (e.g., lifting them by their tails or by pulling the thermistor lead wires attached to their tails) that I could occasionally elicit the sound. Four different individuals (2♂, 2♀) squeaked during the thermoregulation experiments. In all cases the animals were somehow disturbed, and then emitted the sounds.

The vocalizations were recorded with a Uher tape recorder and parabolic reflector and were analyzed using a Kay Elemetrics Co. Sonograph (Model 6061B). The sonagram (Fig. 1) shows that...