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Abstract

The generalized tetration, defined by the equation F (z+1) = bF (z) in the complex plane with F (0) = 1, is
considered for any b > e1/e. By comparing other solutions to Kneser’s solution, natural conditions are found
which force Kneser’s solution to be the unique solution to the equation. This answers a conjecture posed
by Trappmann and Kouznetsov. Also, a new iteration method is developed which numerically approximates
the function F (z) with an error of less than 10−50 for most bases b, using only 180 nodes, with each iteration
gaining one or two places of accuracy. This method can be applied to other problems involving the Abel
equation.
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1 Background

Throughout history, mathematicians have faced the problem of representing larger and larger numbers.
Exponential notation was a huge improvement over standard representations; however, there still can be
a problem with “floating overflow” if the exponent gets too large. One solution is to find a function with
super-fast growth [16]. One proposed function would be the tetration function, whose name comes from
tetra- (four) and iteration. Addition by a positive integer n can be thought of as repeated incrementation,
multiplication by n is done by repeated addition, and exponentiation by n is repeated multiplication. So a
fourth level operation would be repeated exponentiation using the initial base b:

bb
··
b︸︷︷︸

n

Although there are many different notations for this operation, we will use the iterated exponential notation

expnb (x) = bb
··
bx

with n b’s.

The tetration function for base b can then be expressed as F (n) = expnb (1). Thus, we see that F (0) = 1,
F (1) = b, F (2) = bb, and so on. In fact, we can recursively define F (x) by F (x + 1) = bF (x). Working
backwards from this relation, we see that F (−1) = 0 and F (−2) must be undefined. The question is whether
we can extend F (x) to the whole complex plane, minus a branch cut at x ≤ −2.

If we have a tetration function F (x), the inverse function F−1(x) solves Abel’s functional equation [1]

α(g(x)) = α(x) + 1
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for the function g(x) = bx. Such a function can be referred to as an arctetration, which we will denote by
α(z). An analytic solution to Abel’s equation allows us to find fractional iterations of the function g(x). For
example, if we let f(x) = α−1(α(x) + 1/2), then f(f(x)) = g(x), and so we have found a “half-iterate” of
g(x). In fact, solving for α(x) allows us to solve a variety of functional equations involving g(x) [11].

The problem, though, is that the solution to Abel’s equation is far from unique. Not only can we add an
arbitrary constant, but if p(x) is any periodic function of period 1 such that p′(x) > −1, then α(x) +p(α(x))
will also be a solution to Abel’s equation. In order to establish uniqueness for functions with no real fixed
points, as is the case for g(x) = bx, we need to extend our focus to the complex plane.

It should be noted that if e−e ≤ b ≤ e1/e, then there is a real fixed point of bx, and therefore a unique
real analytic solution can be found to the tetration problem using standard power series techniques. The
special case b =

√
2 was analyzed in [9] and [10]. The case b = e1/e is covered extensively in [15] and [17].

Hence, this paper will only be concerned with the case b > e1/e ≈ 1.44466786.
In [14], criterion were found for which there was a unique holomorphic solution α(z) to Abel’s equation for

the case b > e1/e. In fact, they show that Kneser’s solution from [5] satisfies these criteria. Unfortunately,
[14] only conjectures that there is a unique holomorphic tetration function F (z) satisfying the condition
F (x + 1) = bF (z). In [7], a method was presented for computing the tetration function F (z) to about 14
decimal places, at least for the base b = e. However, this precision could only be obtained by using over
2000 nodes for a Gaussian quadrature, which slowed down the computation time.

In this paper, we will find a method for computing F (z) to almost 50 places for all bases b > e1/e. This
method converges much faster in terms of the number of calculations than [7], since only 180 nodes are
needed to obtain this accuracy for b = e. In the process, we will be able the prove the uniqueness conjecture
proposed by [7].

2 Kneser’s solution

We will begin by reproducing Kneser’s result from [5]. Actually, Kneser only considered the function ez, so
we will generalize his result to include bz. We also will reformat his solution to make it easier to refer to
different aspects of his solution later on.

We begin by solving the Schröder equation σb(b
z) = sσb(z), where s is the derivative of bz at a fixed

point [13]. We are only interested in the case b > e1/e, for which there are only complex fixed points. Then
we let Lb be the complex solution of the equation bz = z for which =(Lb) > 0, with =(Lb) minimized. Then
s = ln(Lb) = Lb ln(b). There is a unique solution to Schröder’s equation which is analytic at Lb, and for
which σ′b(Lb) = 1 [6]. By equating coefficients of the power series, we find that

σb(z) = (z − Lb) +
s

2Lb(1− s)
(z − Lb)2 +

s2(1 + 2s)

6L2
b(1− s)(1− s2)

(z − Lb)3

+
s3(1 + 6s+ 5s2 + 6s3)

24L3
b(1− s)(1− s2)(1− s3)

(z − Lb)4 +
s4(1 + 14s+ 24s2 + 45s3 + 46s4 + 26s5 + 24s6)

120L4
b(1− s)(1− s2)(1− s3)(1− s4)

(z − Lb)5

+
s5(1 + 30s+ 89s2 + 214s3 + 374s4 + 416s5 + 511s6 + 461s7 + 330s8 + 154s9 + 120s10)

720L5
b(1− s)(1− s2)(1− s3)(1− s4)(1− s5)

(z − Lb)6

+ · · · .

Unfortunately, it is unclear what the radius of convergence will be for this series. However, we can easily
extend the region of convergence to cover the upper half plane, since this is in the basin of attraction for the
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fixed point Lb of the function logb(z). That is, if we continually apply the principal value of logb to a point
in the upper half plane, it will eventually converge to Lb. Hence, we can define σb another way:

σb(z) = lim
n→∞

sn(lognb (z)− Lb),

where lognb (z) means we apply the principal branch of logb(z) a total of n times. In fact, this representation

of σb(z) also works on the real axis, except for z = 0, 1, b, bb, bb
b

, bb
bb

, . . ..
Next, we let ψb(z) = ln(σb(z))/ ln(s), so that ψb(z) will solve Abel’s equation ψb(b

z) = ψb(z) + 1. We
can compute

ψb(z) =
ln(z − Lb)

ln(s)
+

s

2Lb ln(s)(s− 1)
(z − Lb) +

s2(1 + 5s)

24L2
b ln(s)(1− s)(1− s2)

(z − Lb)2

+
s4(2 + s+ 3s2)

24L3
b ln(s)(1− s)(1− s2)(1− s3)

(z − Lb)3

+
s4(61s− 1 + 71s2 + 290s3 + 299s4 + 109s5 + 251s6)

2880L4
b ln(s)(1− s)(1− s2)(1− s3)(1− s4)

(z − Lb)4

+
s6(6 + 15s+ 69s2 + 143s3 + 115s4 + 212s5 + 221s6 + 155s7 + 49s8 + 95s9)

1440L5
b ln(s)(1− s)(1− s2)(1− s3)(1− s4)(1− s5)

(z − Lb)5

+ · · · .

We can compute ψb(z) very quickly to high levels of precision by the formula

ψb(z) = lim
n→∞

ln(snTm(lognb (z)))

ln(s)
,

where Tm(z) is the m-th degree Taylor polynomial for σb(z). Increasing m will increase the rate of conver-
gence.

Next, we find the inverse function ψ−1
b (z) = σ−1

b (ez ln s). This function will satisfy the functional equation

ψ−1
b (z + 1) = bψ

−1
b

(z).

By reversing the series for σb(z), we find that

ψ−1
b (z) = Lb + ez ln s − s

2Lb(1− s)
e2z ln s +

s2(2 + s)

6L2
b(1− s)(1− s2)

e3z ln s

− s3(6 + 6s+ 5s2 + s3)

24L3
b(1− s)(1− s2)(1− s3)

e4z ln s +
s4(24 + 36s+ 46s2 + 40s3 + 24s4 + 9s5 + s6)

120L4
b(1− s)(1− s2)(1− s3)(1− s4)

e5z ln s

− s5(120 + 240s+ 390s2 + 480s3 + 514s4 + 416s5 + 301s6 + 160s7 + 64s8 + 14s9 + s10)

720L5
b(1− s)(1− s2)(1− s3)(1− s4)(1− s5)

e6z ln s

+ · · · .

As long as b > e1/e, then <(ln(s)) > 0, so we can express ψ−1
b (z) as a limit.

ψ−1
b (z) = lim

n→∞
expnb (Lb + e(z−n) ln s).
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Figure 1: The set Tb is shown in the solid lines for b = e. The set T ′b also includes the dotted lines.

In fact, we can speed up the convergence by considering the limit

ψ−1
b (z) = lim

n→∞
expnb (Sm(e(z−n) ln s)), (1)

where Sm(z) is the m-th degree Taylor polynomial for σ−1
b (z). We can use this limit to show that ψ−1

b (z) is
an entire function for b > e1/e.

Since ψb(z) is defined for real numbers except z = 0, 1, b, bb, bb
b

, . . ., we can let Tb be the set {ψb(x) | x ∈
IR− {0, 1, b, bb, . . .}}. Note that if z ∈ Tb, then z + 1 ∈ Tb as well, since ψb(b

x) = ψb(x) + 1. If we let T ′b be
the set

T ′b = {z − k | z ∈ Tb and k ∈ ZZ+},

then T ′b will be an extension of the set Tb, so that the pattern extends to the left as well: z−1 ∈ T ′b whenever
z ∈ T ′b. Figure 1 shows these two sets for the case b = e.

Let Rb be the simply connected open set above T ′b. Let z0 be any point in Rb. By the Riemann mapping
theorem, there is a bijective holomorphic mapping from Rb to the upper half plane. By following this mapping
with a Möbius transformation z 7→ (az+ b)/(cz+d), ad− bc > 0, we can get a holomorphic mapping ρb from
Rb to the upper half plane such that ρb(z0 + 1) = ρb(z0) + 1 and ρ′b(z0 + 1) = ρ′b(z0). Since the region Rb is
periodic, we can define the mapping ρb(ρ

−1
b (z) + 1)− 1 sending the upper half plane to the upper half plane,

which will fixes the point ρ(z0), and whose derivative at ρ(z0) is 1. Thus, ρb(ρ
−1
b (z) + 1) − 1 = z for all z,

allowing us to establish the identity ρb(z + 1) = ρb(z) + 1 for all z ∈ Rb. Likewise, ρ−1
b (z + 1) = ρ−1

b (z) + 1
for all z in the upper half plane.

Even though ρb(z) is only defined for the region Rb, since the boundary Tb is piecewise smooth, ρb(z)
can be extended continuously to the set T ′b. Since we can add a real constant to ρb(z) to produce a function
with the same properties, we will add such a constant so that

lim
x→−∞

ρb(ψb(x)) = −2.

Finally, we consider the function κb(z) = ψ−1
b (ρ−1

b (z)). This will be defined for the upper half-plane, and
in this region

κb(z + 1) = ψ−1
b (ρ−1

b (z) + 1) = bψ
−1
b

(ρ−1
b

(z)) = bκb(z).
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Furthermore, for x > −2, x /∈ ZZ, κb(x) is defined, and in fact is real. Since limx→−2+ κb(x) = −∞, we
see that limx→−1+ κb(x) = 0, limx→0+ κb(x) = 1, limx→1+ κb(x) = b, etc., so we can extend the definition
of κb(x) by continuity to all x > −2. Finally, since κb(z) sends real numbers to real numbers, we can
analytically extend κb(z) through complex conjugation κb(z) = κb(z) to the cut plane

C−2 = C− {x ∈ IR | x ≤ −2}.

Then everywhere in this cut plane, we have κb(z + 1) = bκb(z).

3 The Uniqueness of Kneser’s solution

Both [7] and [14] conjecture that there is a unique analytical function F (z) that satisfies F (z + 1) = bF (z)

on C−2 for which F (z) = F (z). Clearly Kneser’s solution κb(z) satisfies these conditions, but the question
is whether any other functions could also satisfy the same conditions.

To answer this question, we need to understand the properties of the ρb(z) function used in the construc-
tion of Kneser’s solution. Since ρb(z + 1) = ρb(z) + 1, the function ρb(z) − z will be a periodic function of
period 1. Thus, there is a complex Fourier series for ρb(z)− z:

ρb(z)− z =

∞∑
k=−∞

cke
2πikz.

But ρb(z) is also a conformal mapping from the region Rb to the half plane, and so it solves a fluid flow
problem on the region Rb. Although we can expect major changes in the fluid flow near the boundary T ′b,
we see that the fluid flow will approximate a linear flow far away from the boundary. Thus, ρb(z) − z will
approach a constant as =(z)→∞. In order for this to happen in the Fourier series, we see that ck = 0 for
all k < 0. Thus,

ρb(z) = z +

∞∑
k=0

cke
2πikz = z + c0 + c1e

2πiz + c2e
4πiz + c3e

6πiz + · · · .

It is possible to reverse this series, and find a series for ρ−1
b (z):

ρ−1
b (z) = z + d0 + d1e

2πiz + d2e
4πiz + d3e

6πiz + · · · , (2)

where

d0 = −c0
d1 = −c1e−2πic0

d2 = (−c2 + 2πic21)e−4πic0

d3 = (−c3 + 6πic1c2 + 6π2c31)e−6πic0

d4 =

(
− c4 + 8πic1c3 + 4πic22 + 32π2c21c2 −

64

3
π3ic41

)
e−8πic0

d5 =

(
− c5 + 10πic2c3 + 10πic1c4 + 50π2c1c

2
2 + 50π2c21c3 −

500

3
π3ic31c2 −

250

3
π4c51

)
e−10πic0
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d6 =

(
− c6 + 6πic23 + 12πic2c4 + 12πic1c5 + 24π2c32 + 144π2c1c2c3 + 72π2c21c4 − 432π3ic21c

2
2

− 288π3ic31c3 − 864π4c41c2 +
1728

5
π5ic61

)
e−12πic0

d7 =

(
− c7 + 14πic3c4 + 14πic2c5 + 14πic1c6 + 98π2c22c3 + 98π2c1c

2
3 + 196π2c1c2c4 + 98π2c21c5

− 1372

3
π3ic1c

3
2 − 1372π3ic21c2c3 −

1372

3
π3ic31c4 −

9604

3
π4c31c

2
2 −

4802

3
π4c41c3 +

67228

15
π5ic51c2

+
67228

45
π6c71

)
e−14πic0

d8 =

(
− c8 + 8πic24 + 16πic3c5 + 16πic2c6 + 16πic1c7 + 128π2c2c

2
3 + 128π2c22c4 + 256π2c1c3c4

+ 256π2c1c2c5 + 128π2c21c6 −
512

3
π3ic42 − 2048π3ic1c

2
2c3 − 1024π3ic21c

2
3 − 2048π3ic21c2c4

− 2048

3
π3ic31c5 −

16384

3
π4c21c

3
2 −

32768

3
π4c31c2c3 −

8192

3
π4c41c4 +

65536

3
π5ic41c

2
2

+
131072

15
π5ic51c3 +

1048576

45
π6c61c2 −

2097152

315
π7ic81

)
e−16πic0

Because the function ρ−1
b (z) is analytic in the upper half plane, the auxiliary function

gb(z) = d0 + d1z + d2z
2 + d3z

3 + d4z
4 + · · · (3)

will have a radius of convergence of 1. Then ρ−1
b (z) = z + gb(e

2πiz).

Proposition 1:
Suppose that F (z) is an analytic function defined on C−2 for which F (z+ 1) = bF (z), F (0) = 1, and that

F (z) = F (z). Suppose further that for the region where =(F (z)) > 0, ψb(F (z)) can be expressed as

ψb(F (z)) = z +

∞∑
k=0

fke
2πikz.

Then F (z) = κb(z) for all z ∈ C−2.

Proof:
Note that

κ−1
b (F (z + 1)) = κ−1

b (bF (z)) = κ−1
b (F (z)) + 1.

Thus, κ−1
b (F (z))− z is periodic with period 1. Since κ−1

b (z) = ρb(ψb(z)), we find that

κ−1
b (F (z)) = ρb

(
z +

∞∑
k=0

fke
2πikz

)
= z +

∞∑
k=0

hke
2πikz,

where we can determine hk formally from the ck and fk. Since F (z) = F (z),

κ−1
b (F (z)) = κ−1

b (F (z)) = z +

∞∑
k=0

hke
−2πikz.
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By the uniqueness of the Fourier coefficients, this forces hk = 0 for all k 6= 0. Thus, κ−1
b (F (z)) = z+h0. But

κ−1
b (F (0)) = κ−1

b (1) = 0, so h0 = 0. Since κ−1
b (F (z)) = z whenever =(F (z)) > 0, we see that F (z) = κb(z)

for at least some region, and by analytic continuation, F (z) = κb(z) for all z in C−2.

Proposition 2:
Suppose that F (z) is an analytic function defined on C−2 for which F (z+ 1) = bF (z), F (0) = 1, and that

F (z) = F (z). Suppose that for all x ∈ IR,

lim
y→+∞

F (x+ iy) = Lb.

Then F (z) = κb(z) for all z ∈ C−2.

Proof:
Since ψb(F (z+ 1)) = ψb(b

F (z)) = ψb(F (z)) + 1, we see that ψb(F (z))− z is periodic with period 1. Since
=(Lb) > 0, by the limit property, we have that =(F (z)) > 0 whenever 0 ≤ <(z) ≤ 1 and =(z) > M for
sufficiently large M , and by periodicity, we can define ψb(F (z)) whenever =(z) > M . By the Fourier series,

ψb(F (z)) = z +

∞∑
k=−∞

fke
2πikz.

Thus,

F (z) = ψ−1
b

(
z +

∞∑
k=−∞

fke
2πikz

)
.

If fk 6= 0 for some negative k, then as =(z)→∞,∣∣fke2πikz
∣∣→∞ as =(z)→∞.

If there are many such terms, they will have different exponential growth rates asymptotically, so such terms
cannot cancel out asymptotically. Thus∣∣∣∣∣

∞∑
k=−∞

fke
2πikz

∣∣∣∣∣→∞ as =(z)→∞.

Also note that the argument of this sum will depend on the real part of z. Thus, there is a path C going
towards +∞i for which ψb(F (z)) is real and positive along this path. That is, for every y > 0 there is an x
such that with z = x+ iy,

arg

(
z +

∞∑
k=−∞

fke
2πikz

)
= 0.

But then along this path,

lim
C
F (z) = lim

C
ψ−1
b

(
z +

∞∑
k=−∞

fke
2πikz

)
= lim
z→+∞

ψ−1
b (z),

and limz→+∞ ψ−1
b (z) does not exist, since the real part is unbounded, and the imaginary part is negative.

(ψ−1
b maps the real axis to the set Tb.) This contradicts the fact that =(F (z)) > 0 whenever =(z) > M .

This contradiction shows that fk = 0 for negative k. So by Proposition 1, F (z) = κb(z).
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Corollary 1:
Let z0 ∈ C−2. Then κb(z0) is a holomorphic function of the base b for b > e1/e.

Proof:
First consider the case =(z0) > 0. Because of uniqueness, each of the Fourier coefficients di for i ≥ 1 will

be a holomorphic function of b. Unfortunately, d0 is not uniquely defined because of the branch cut of ψb(z).
Adding 2kπi/ ln(s) to d0, where k is an integer, produces another valid d0. But by careful manipulation of
the branch cut of ψb(z), we can make d0 a holomorphic function of b.

Because gb(z) has a radius of convergence of 1, the series for gb(e
2πiz0) will be absolutely convergent for

each b, so gb(e
2πiz0) will be a holomorphic function of b. Hence, ρ−1

b (z0) is holomorphic. It is already estab-
lished [4] that ψ−1

b (z) is a holomorphic function of b for b > e1/e, so κb(z0) = ψ−1
b (ρ−1

b (z0)) is holomorphic.
Complex congugation handles the case with =(z0) < 0. For z0 real, z0 > −2, we can consider the limit

of κb(z0 + iε) as ε→ 0+. Since this converges uniformly to κb(z0), κb(z0) is holomorphic.

It is likely that κb(z0) has a logarithmic branch cut at b = e1/e, since the tetration is not uniquely defined
for b < e1/e. [10]

4 First approximation

The goal of this paper is to produce an iterative method for calculating κb(z). However, this iterative method
requires having a first order approximation to begin to process. In [7], the first order approximation was a
piecewise defined function which works for b = e, but we want to generalize the process to arbitrary b. We
can do this with a polynomial approximation.

Rather than using Abel’s equation α(f(z)) = α(z) + 1, we can create a homogeneous equation by letting
λ(z) = 1/α′(z). Then λ(z) satisfies Julia’s equation [4]

λ(f(z)) = λ(z)f ′(z).

In the case where f(z) = bz, this becomes λb(b
z) = λb(z)b

z ln(b). One advantage of using Julia’s equation
over Abel’s equation is that λb(z) approaches 0 near the fixed point Lb, although the solution we are looking
for is not analytic there. Note that Abel’s solution goes to infinity as z → Lb.

If we force the Maclaurin series

λb(z) =

∞∑
n=0

cnz
n

to satisfy λ(bz) = λ(z)bz ln b, we find that, if we assume c0 = 1, the other coefficients satisfy

1 1 1 1 1 · · ·
0 2 3 4 5 · · ·
−1 4− 2

ln b 9 16 25 · · ·
−2 8− 6

ln b 27− 6
(ln b)2 64 125 · · ·

−3 16− 12
ln b 81− 24

(ln b)2 256− 24
(ln b)3 625 · · ·

...
...

...
...

...
. . .


·



c1
c2
c3
c4
c5
...

 =



ln b− 1
ln b
ln b
ln b
ln b

...

 , (4)

where the pattern for the matrix is mi,j = ji−1 − (ln b)1−j(i − 1)!/(i − j − 1)!. For each n we can solve n
equations with n unknowns to find an nth degree polynomial approximation for λb(z). Because the matrix
involves only real numbers, the polynomial approximates will be real whenever z is real.
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Base Number of digits of precision
b pb = λb(0) d = 100 d = 200 d = 300 d = 400 d = 500

3/2 1.599261338397936 31 41 44 47 49
2 1.283082409572121 17 20 22 23 24
e 1.091767351258321 17 17 18 18 19
10 0.731477430771517 11 12 13 14 15

Table 1: This shows how the polynomial approximates of λb(z) seem to converge. Since pb is calculated by
an integral from 0 to 1, this gives a good indicator of the precision within this interval. Notice that the rate
of convergence slows down considerably as base b increases.

The only drawback to using the homogeneous Julia’s equation is that we must normalize the solution by
multiplying by a constant pb so that ∫ 1

0

1/λb(z) dz = 1.

This is easily done numerically for each polynomial approximates, allowing us to approximate the solution
of Abel’s equation with αb(x) =

∫
1/λb(z) dz + C. It is an open problem as to whether the normalized

polynomial approximates converge to a function, although table 1 seems to indicate that indeed there is
convergence as the degree of the polynomial increases. If it does converge, and we can pick the constant C
so that αb(1) = 0, then by [14] this solution will be κ−1

b (z).
Even though we cannot prove convergence, for many values of b we can numerically see that it seems to

slowly converge to a single function. For example, when b = e, we get

λe(z) ≈ 1.091767351258320991801− 0.594439394732060169698z + 0.718664427208033464198z2

− 0.158494299757674664300z3 + 0.042841152742571103199z4 − 0.010127555170266799426z5

+ 0.001690267759830729255z6 − 0.000135002549849774665z7 + 0.000009493791404119462z8

− 0.000012519767005748209z9 + 0.000002459017138186054z10 + 0.000001451792126232173z11

− 0.000000278038029203532z12 − 0.000000281449883192043z13 + 0.000000031142865920363z14 + · · · .

5 The Cross-Track Method

In this section we will show how given one approximation to the Kneser solution κb(z), we can use a
combination of the Fourier series and Cauchy’s contour integral formula to find an even better approximation.
By iterating this process, we can numerically evaluate Kneser’s solution to remarkable precision.

We will use a much smaller contour than what was used in [7], which will increase the speed of the
computation. Since κb(z) is analytic, we have the Cauchy contour integral

κb(z) =
1

2πi

∮
Ω

κb(t)

t− z
dt,

where the contour Ω consists of 4 parts, where t = x+ iy:
A: integrate along the line x = 1 from t = 1− i to t = 1 + i.
B: integrate along the upper half of the circle x2 + (y − 1)2 = 1 counterclockwise.
C: integrate along the line x = −1 from t = −1 + i to t = −1− i.
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Figure 2: The contour Ω along with the interior sample points that will be used to numerically compute the
contour integral. The points along the horizontal part of the cross will later be used to compute the Fourier
coefficients.

D: integrate along the lower half of the circle x2 + (y + 1)2 = 1 counterclockwise.
The contour Ω is shown in figure 2, and resembles a racetrack.

Note that along the integral A, we can let t = 1 + iy, and use the fact that κb(z+ 1) = bκb(z) to simplify.
Thus, we see that

1

2πi

∮
A

κb(t)

t− z
dt =

1

2π

∫ 1

−1

bκb(iy)

1 + iy − z
dy.

Likewise, integrating along C can be done by letting t = −1 + iy, along with the identity κb(z − 1) =
logb(κb(z)).

1

2πi

∮
C

κb(t)

t− z
dt = − 1

2π

∫ 1

−1

logb(κb(iy))

−1 + iy − z
dy.

We can put these two pieces together to form the function

H(z) =
1

2π

∫ 1

−1

(
bκb(iy)

1 + iy − z
− logb(κb(iy))

−1 + iy − z

)
dy.

Integrating along the curve B is more tricky. We can use the substitution t = i+ eiθ to produce

G(z) =
1

2πi

∮
B

κb(t)

t− z
dt =

1

2π

∫ π

0

κb(i+ eiθ)eiθ

i+ eiθ − z
dθ.

We can use symmetry to do the last piece of the contour. It is clear that∮
D

κb(t)

t− z
dt = −

∮
B

κb(t)

t− z
dt.
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Putting the pieces together, we see that for z within the racetrack Ω,

κb(z) = H(z) +G(z) +G(z). (5)

The goal is to use equation 5 to produce a more accurate numerical approximation of κb(z) from a
previous approximation. We can use a Gauss-Legendre quadrature to calculate H(z). For a fixed integer
n, we will consider 2n Gauss nodes along the imaginary axis from −i to i. Hence, if we have a previous
approximation of κb(z) for these 2n nodes, we can approximate H(z).

Numerically approximating G(z) is tricky. We can again use a Gauss-Legendre quadrature with 2n nodes,
provided that we have a way of approximating κb(z) for =(z) ≥ 1. This can be done with a Fourier series.
In the upper half plane, κb(z) = ψ−1

b (ρ−1
b (z)), so ψb(κb(z)) − z = ρ−1

b (z) − z will be a periodic function of
period 1. By equation 2, we have that

ψb(κb(z))− z = d0 + d1e
2πiz + d2e

4πiz + d3e
6πiz + · · · ,

so we can compute the coefficients via

dk =

∫
P

(ψb(κb(z))− z)e−2kπiz dz (6)

where the contour P covers one period. Note that P must be in the upper half plane (the domain of ρ−1
b (z)),

within the contour Ω, and as we shall see, must be below the line =(z) = 1 to allow accurate computation of
G(z). Also, since ψb(z) has a branch cut, care must be taken to ensure that the branch cut is not crossed in
the integral. Thus, the optimal location for P is the line from (−1+i)/2 to (1+i)/2. The preferred integration
techniques for dealing with smooth periodic functions are either the trapezoid rule or the midpoint rule [3].
We will use the midpoint method with n nodes to numerically compute the coefficients dk. These nodes form
the horizontal part of the cross in figure 2. Once we have sufficient number of coefficients, we can estimate
G(z) with

G(z) =
1

2π

∫ π

0

ψ−1
b (ρ−1

b (i+ eiθ))eiθ

i+ eiθ − z
dθ,

using equation 2 to calculate ρ−1
b (z). We can now formalize the procedure for numerical calculation of κb(z):

1) First, we pick a value of n. This will determine the 3n nodes creating the cross formation. Note that if
we have one approximation Fj(z) for Knesser’s solution known at the 3n nodes, we can use the Gaussian-
Legendre quadrature on equation 5 to find a better approximation Fk+1(z) evaluated at the same 3n nodes.
Actually, only 2n integrals are needed, since we can use the property that Fk+1(z) = Fj+1(z) for the nodes
below the real axis. We will label the Gauss nodes along the positive imaginary axis as y1 to yn. The equally
spaced nodes in the horizontal part of the cross will be labeled as x1 to xn.

2) We will use the approximation from section 4 to create the seed values of F0(xk) and F0(yk). For each of
the nodes yk, we use Newton’s method to find a z such that∫ z

0

1

λb(t)
dt = yk (7)

using a numerical integration for each iteration step. Here, we use a high degree polynomial approximation
for λb(t). For y1, we can use z = 0 as the initial Newton’s method seed, and for other yk we can use the

11



resulting z of yk−1. However, equation 7 has yk = 0 producing z = 0 instead of z = 1, so we will fix this by
letting F0(yk) ≈ bz. In a similar way, we can compute F0(xk) for the points on the horizontal piece of the
cross. This gives us our initial approximation.

3) We now assume that we have one approximation Fj(z) known at all of the 3n nodes of the cross. To find
a better approximation, we first must find the approximate coefficients dk assuming that ψb(Fj(z)) − z is
periodic. Since we are integrating from (−1 + i)/2 to (1 + i)/2, we can substitute z = x+ i/2 to find

dk,j = ekπ
∫ 1/2

−1/2

(ψb(Fj(x+ i/2))− x− i/2)e−2kπix dx, (8)

being careful to move the branch cut of ψb(z) so that the branch cut is not crossed in the integral. Since we
are integrating a periodic function, the midpoint rule is the best approach for numerical integration. Because
this integral is only half the size of the other integrals we are doing, we only need n nodes for this integral,
shown in figure 2 by the thick black equally spaced dots along the horizontal segment from −1/2 + i/2 to
1/2 + i/2. Since the series in equation 3 has a radius of convergence of 1 (and in fact, it converges for most
points on that circle), we know that |dk| is bounded. Because of the ekπ in front of the integral, we see
that the integral in equation 8 must decrease exponentially with k. Hence, we anticipate truncation errors
in computing this integral for large k. However, since we are only evaluating the series in equation 2 for
points with =(z) ≥ 1, each coefficient dk will be multiplied by a value of o(e−2kπ). Therefore, the required
precision of the dk decreases faster that the truncation errors increase.

However, there is still a limit to how many terms of the series we can compute accurately. As k increases,
the number of cycles in the integrand increases, and the number of sample points is always n. We need at
least three sample points per cycle if we are to avoid problems with resonance. Thus, we can only compute
the first bn/3c terms of the Fourier series to any degree of accuracy. If we let

Rj(z) = z +

bn/3c∑
k=0

dk,je
2kπiz,

we find that we still should have 2nπ/(3 ln(10)) ≈ 0.9096n digits of precision in calculating κb(z) for =(z) ≥ 1.

4) We now have a way of numerically evaluating G(z). Using the Gaussian quadrature with 2n nodes, we
can approximate

Gj(z) =
1

2π

∫ π

0

ψ−1(Rj(i+ eiθ))eiθ

i+ eiθ − z
dθ.

Finally, we use the Gaussian quadrature again with 2n nodes to find the approximation of H(z), which we
can call Hj(z). Putting the pieces together, we form

Fj+1(z) = Hj(z) +Gj(z) +Gj(z).

However, we have another complication. We need to be sure that the initial condition F (0) = 1 still
holds. In [7], this issue was ignored until the iterations had converged, and then an adjustment was made at
the end. However, we can obtain faster convergence if we incorporate the initial condition in each iteration.
It is not hard to see that κ′b(0) = λb(1) = λb(0) ln(b). Thus, if we let

∆aj =
Fj+1(0)− 1

λb(0) ln(b)
,

12



Base Minimum digits of precision
b n = 10 n = 20 n = 30 n = 40 n = 50 n = 60

3/2 8 16 26 33 40 50
2 8 15 24 32 41 50
e 7 14 23 33 41 49
10 6 16 24 32 41 49

Table 2: This shows the accuracy of the cross-track method for various bases and number of nodes. We used
9 key values within the contour Ω, namely 0,±1/2, i/2, (i± 1)/2, i, and i± 1/2, to determine the amount of
accuracy within Ω.

then Fj+1(−∆aj) will be much closer to 1 than Fj+1(0). Then we evaluate Fj+1(z −∆aj) for each of the
nodes of the cross, and we are ready for the next iteration.

5) Repeat steps 3 and 4 for a fixed n until the digits stabilize to m digits of accuracy for all of the values
of Fj(xk) and Fj(yk). When b = e, we gain a digit of accuracy for every two iterations. One could, in fact
increase n dynamically (between steps 3 and 4), but for our purposes we kept n fixed so that we can compare
the resulting accuracy as a function of n.

6 Numerical Results

For most values of b, the iterations quickly converge to F∞(z), which still depends on n. Also, as n increases,
the precision of F∞(z) also increases in what seems to be a linear function of n. We explored 4 different
bases of b to give a large range of behaviors. The base b = 3/2 is very close to the borderline case b =
e1/e ≈ 1.444667861. The base b = 2 is special because it allows us to generalize the Ackermann function [2].
In fact, A(4, x) = κ2(x + 3) − 3 for non-negative integers, so the tetration with base 2 allows us to define
A(4, z) for complex z. The base b = e could be called the natural tetration, and the base b = 10 might
be called the common tetration, since it seems to be the standard for writing extremely large numbers. If
a = κ−1

10 (2) ≈ 0.393113, then κ10(a+ 1) = 100, κ10(a+ 2) = one googol, κ10(a+ 3) = one googolplex, etc.
Table 2 shows how the precision of F∞(z) varies with n for these 4 values of b. With only n = 60, which

corresponds to 180 nodes on the cross, we obtain nearly 50 places of accuracy regardless of the base b. This
is much more efficient than [7], which used over 2000 nodes to obtain 14 places of accuracy. In fact, with the
exception of b = 3/2, the whole process can be computed in Mathematica in less than an hour. The issue
with b = 3/2 is that ψ3/2(z) and ψ−1

3/2(z) are much harder to compute, due to the large number of iterations

required to get past the “bottleneck”, as described in [12]. In fact, the internal precision of the operations
had to be increased to 300 digits to ensure the required accuracy of the output.

Although we have not proven that F∞(z) does not converge to a single function as n increases, it is clear
that if it does converge to a function, this function satisfies the conditions of proposition 1. Hence, this
function would be Knesser’s solution, κb(z).

It would be prudent to compare the values of table 3 to the results of [7]. This paper computes a tetration
to 14 places, and these 14 places agree with table 3 except for an occasional truncation error. For example,
[7] has F (0.1) = 1.11211143309340, whereas rounding the result of table 3 gives κe(0.1) = 1.11211143309341.
Otherwise, the two functions are in agreement, even for complex numbers. But this is to be expected, since
by Proposition 2, the function that the method of [7] converges to, and the function the Cross-Track method
converges to, are one and the same function.
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z κ3/2(z) κ2(z)
0.0 1.00000000000000000000000000000000000000000000000000 1.00000000000000000000000000000000000000000000000000

0.1 1.06284234873464343242289459256119440882976123516299 1.08911805218112025270490725132092334698151174764338

0.2 1.12197875568875728079040779112109514777130047307416 1.17897679256739584330016397359092167205106041286702

0.3 1.17780836410921504353544685230709891229298742446304 1.27014554317420866333373853190959534081824236612215

0.4 1.23067512258151711310509700227763973572942797794426 1.36320901804500919413239547791600793658449949895910

0.5 1.28087727794027296901334969942973068453795309304964 1.45878181603642170068397166103858713529660660533091

0.6 1.32867494912032626797797189335573620784825567374044 1.55752379162514183329015532378804817435782151235363

0.7 1.37429622531967779177219590076610441282249214921921 1.66015710068592536726443932711298760312423656063827

0.8 1.41794211745233481475987912671061877124633456639421 1.76748581883697804348992764509491283873499903494935

0.9 1.45979060989323733944098866385839807594555647625269 1.88041920988427273592496515421331959090627231185896

1.0 1.50000000000000000000000000000000000000000000000000 2.00000000000000000000000000000000000000000000000000

z κe(z) κ10(z)
0.0 1.00000000000000000000000000000000000000000000000000 1.00000000000000000000000000000000000000000000000000

0.1 1.11211143309340786806281154809577742092498942802955 1.18401002462473366521876710905460278758082638826212

0.2 1.23103892493160892985997172331914319937183280624232 1.40613758361569542577222810113729594351342971924995

0.3 1.35838369631113760894227410836164545709035212956835 1.68022722088639640278923484977936612769290055484479

0.4 1.49605193039935318790659927009656028282399882117554 2.02675702838861894055187697613952349693690656588769

0.5 1.64635423375119458097192403159211451820531164896904 2.47700560634496477508778170585465604320207500513487

0.6 1.81213853570187244635577738019837353916526213342129 3.08052527175548202049766020624261710559268543468798

0.7 1.99697132461830684783516761510974187581229993180819 3.91919641926272841954547424690150065723791857599574

0.8 2.20538955455275443300985335146549436572740834624883 5.13515284083318646108725226635526761431235114029797

0.9 2.44325744833852525438143378194583129004563409061726 6.98996117953471489851587499189704403767001833312530

1.0 2.71828182845904523536028747135266249775724709369996 10.00000000000000000000000000000000000000000000000000

Table 3: Table of values for κb(z) for various real z and various bases b.

For real values of z, the tetration can be computed using table 3. The properties κb(z + 1) = bκb(z) and
κb(z − 1) = logb(κb(z)) can be used for values outside the range of the table. For complex values of z, the
best way to describe the tetration is to give the Fourier coefficients for ψb(κb(z)) − z. These are listed in
table 4. With these coefficients, we can compute κb(z) with the formula

κb(z) = ψ−1
b

(
z + d0 + d1e

2πiz + d2e
4πiz + d3e

6πiz + d4e
8πiz + · · ·

)
,

using equation 1 to compute ψ−1
b (z). The coefficients given can be used to compute κb(z) to 25 places for

=(z) ≥ 1.
In [7], it was assumed that

κe(z) ∼ L+ eln(s)z+r

as =(z)→∞ for some value of r. We can now see that r = d0 ln(s), so for the base b = e,

r ≈ 1.07796143752792144101783319873098224011431901617802
− 0.94654096394782311971172474917056009608888185974512i

This indicates that the results of [8] are accurate to 12 places.
Finally, since we can compute κb(z) accurately for all values in the cut complex plane, we can form

a contour plot of the functions. Figure 3 shows the contour plots for b = 2, b = e, and b = 10. The
Mathematica notebook that generated the κb(z) function, which also has the commands that generated the
graphs of figure 3, can be found at

http://myweb.astate.edu/wpaulsen/tetration.html

Also included at this site are color versions of figure 3.
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d0:-7.48349134602615816221240590112892949121257087361804−1.99996308926004674128006134398226687448913789824589i

d1: 0.00175719602010081289134016848037190381069435975908+0.08922069482651200143644599719182093621345996998707i

d2: 0.00114973579460515700378082226818030808987769458475+0.03740838816001729929227936781575302582055002595908i

d3: 0.00085530854414282878357440931701522778550198077716+0.02249417411214745232545293819243592130174149895983i
3
2 d4: 0.00068263449624615485430044544408249403718332385805+0.01569782958096839418797924841966772195860226898400i

d5: 0.00056892856181940700919842342751367521785060031106+0.01188707115374836718562032399733388670762532089060i

d6: 0.0004882407640328371414755387586397014714979472924 +0.0094780297534490830554196440616022773725392177518 i

d7: 0.00042792713064786297541137578548508120998432777 +0.007830654198272824337752425328626232910815790306 i

d8: 0.00038108618026262987265221215532208086259376 +0.0066398033790883012838786039076953404501776761 i

d0:-1.23806941407137489416696874207372877930684538882043 +1.24816132484492036599940507052693933897696678427591i

d1: 0.00286464164572986547819494250908485877459797429482+0.09001416256086320154659764465141315475999704723129i

d2: 0.00163613443662158961033829265952002846988856456412+0.03772961751248719901302864548541206650116812507673i

d3: 0.00115187868327318893374980524840794988974884711946+0.02268307057422195686208026784327810461262845142640i

2 d4: 0.00089051359032509874097991792557370274398148307975+0.01582749272276461800500709660459162876124844789372i

d5: 0.00072641184418945426262557165104553685863477414090+0.01198396934354393924419365690312310327429484446214i

d6: 0.0006136169937465890052224025336813938313920452967 +0.0095544422163839476767344623444772704534044979821 i

d7: 0.000531244814400172570041708270727035080063976776 +0.007893188315673435338155101204325171060453030729 i

d8: 0.0004684141135809476704389174774561728206307295 +0.00669238659280844335600842687846233592743592746 i

d0:-0.48841508844379660330741456880098280707763662392493 +0.92230686292605693600282355599344017140495361014379i

d1: 0.00385157873541120442039936410939458584167069835359+0.09056477795411682044547667460610562298035940034753i

d2: 0.00210091678690281487298665528173351414771188727246+0.03795624815247508554188893672201581078029301397502i

d3: 0.00144754775842178512032205636083702888354249030505+0.02281729713002375502899972915432846601683536028143i

e d4: 0.00110438609921276373489848278782305836622016411857+0.01591997616942238837419345412868698280497718476576i

d5: 0.00089259309933704127166873673114391469843246965762+0.01205322305695692864975008563287107153525207211134i

d6: 0.00074877392018061530497580449510529402230704886550+0.00960910952769303493726464105622293325015635145980i

d7: 0.000644707067590377697848802688285074344003166050 +0.007937942295658218859174134769344880470771417123 i

d8: 0.00056590616417905901813446692767287237106611969 +0.00673001529218777005426227518796589191077670063 i

d0: 0.17799316199455913031946620533448468257225716644363+0.42824054091004017448062454919411317805448311007795i

d1: 0.00593749112447128122510204103427646057384240098461+0.09176334001008019563090867214482854204891666828926i

d2: 0.00308121630633651465509560498569969359412216583919+0.03846155851094691064712005762290158915023254809357i

d3: 0.00206853201498188485911547589423647690560552702703+0.02312209360226542373053477657528160550325978012831i

10 d4: 0.00155196578198029035025888093032518949193908503953+0.01613316718526100835809070293721436472381745492027i

d5: 0.00123933559770777876011608432616740702809199061860+0.01221493333806934600494243068817670064743188277136i

d6: 0.00103007920019430831393267676049513630501474785622+0.00973821026718033427634202387289332451160586313382i

d7: 0.000880353108755134051760086215338175652449026100 +0.0080447051392493282650388799338260005524429899481 i

d8: 0.00076800610104860938597838201430137184225876054 +0.006820606592296152855983866087877088167089753177 i

Table 4: This table shows the coefficients di’s for various bases. The base b is indicated on the left. In all
cases, the coefficients slowly converge to 0, since the series in equation 3 has a radius of convergence of 1.
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Figure 3: Level curves for <(κb(z)) and =(κb(z)) = 0,±1,±2,±3,±4 are shown for various b.
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7 Conclusion

We have found a way to numerically approximate κb(z) to arbitrarily high degree of accuracy. One could
produce 100 digits of precision in a few hours. But the technique introduced here can be used to solve many
other equations. Most functional equations can be reduced to solving Abel’s equation α(g(z)) = α(z) + 1
for a given function g(z) [11]. The cross-track method could be used to calculate α−1(z), which in turn can
be used to calculate α(z).

But this technique also opens the door for new discoveries in the field of tetration. We saw in Corollary
2 that for a fixed real x0, κb(x0) can be thought of as a real analytic function of b. Then there is a unique
way of extending this function into the complex plane. Hence, we could define κb(z) for complex b, (although
there are bound to be logarithmic singularities appearing). This would give us a firm definition of complex
tetration.

There is also no reason why we cannot use the cross-track method to solve F (z + 1) = κb(F (z)). This
would give us a complex pentation, which is repeated tetration. We would need to first compute the power
series for κb(z) at a fixed point, and it would be harder to come up with an initial approximation. This was
actually done in [9] for base e, but perhaps this can be explored in a future paper with different bases.
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