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Abstract

The generalized tetration, defined by the equation F(z+1) = b7 (*) in the complex plane with F(0) = 1, is
considered for any b > e!/¢. By comparing other solutions to Kneser’s solution, natural conditions are found
which force Kneser’s solution to be the unique solution to the equation. This answers a conjecture posed
by Trappmann and Kouznetsov. Also, a new iteration method is developed which numerically approximates
the function F(z) with an error of less than 10759 for most bases b, using only 180 nodes, with each iteration
gaining one or two places of accuracy. This method can be applied to other problems involving the Abel
equation.
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1 Background

Throughout history, mathematicians have faced the problem of representing larger and larger numbers.
Exponential notation was a huge improvement over standard representations; however, there still can be
a problem with “floating overflow” if the exponent gets too large. One solution is to find a function with
super-fast growth [16]. One proposed function would be the tetration function, whose name comes from
tetra- (four) and iteration. Addition by a positive integer n can be thought of as repeated incrementation,
multiplication by n is done by repeated addition, and exponentiation by n is repeated multiplication. So a
fourth level operation would be repeated exponentiation using the initial base b:

b
pY
~—

n

Although there are many different notations for this operation, we will use the iterated exponential notation

b7
expp(z) = b” with n b’s.

The tetration function for base b can then be expressed as F'(n) = expj(1). Thus, we see that F(0) = 1,
F(1) = b, F(2) = t*, and so on. In fact, we can recursively define F(z) by F(z + 1) = b¥®). Working
backwards from this relation, we see that F'(—1) = 0 and F(—2) must be undefined. The question is whether
we can extend F'(z) to the whole complex plane, minus a branch cut at < —2.

If we have a tetration function F(z), the inverse function F~!(z) solves Abel’s functional equation [1]

a(g(z)) = a(z) +1



for the function g(x) = b*. Such a function can be referred to as an arctetration, which we will denote by
a(z). An analytic solution to Abel’s equation allows us to find fractional iterations of the function g(z). For
example, if we let f(z) = a~!(a(z) + 1/2), then f(f(x)) = g(x), and so we have found a “half-iterate” of
g(z). In fact, solving for a(z) allows us to solve a variety of functional equations involving g(z) [11].

The problem, though, is that the solution to Abel’s equation is far from unique. Not only can we add an
arbitrary constant, but if p(z) is any periodic function of period 1 such that p’(z) > —1, then a(x) +p(a(z))
will also be a solution to Abel’s equation. In order to establish uniqueness for functions with no real fixed
points, as is the case for g(x) = b*, we need to extend our focus to the complex plane.

It should be noted that if e=¢ < b < e'/€, then there is a real fixed point of b*, and therefore a unique
real analytic solution can be found to the tetration problem using standard power series techniques. The
special case b = /2 was analyzed in [9] and [10]. The case b = e!/¢ is covered extensively in [15] and [17].
Hence, this paper will only be concerned with the case b > e'/¢ ~ 1.44466786.

In [14], criterion were found for which there was a unique holomorphic solution a(z) to Abel’s equation for
the case b > e!/¢. In fact, they show that Kneser’s solution from [5] satisfies these criteria. Unfortunately,
[14] only conjectures that there is a unique holomorphic tetration function F'(z) satisfying the condition
F(x+1) = bF®). In [7], a method was presented for computing the tetration function F(z) to about 14
decimal places, at least for the base b = e. However, this precision could only be obtained by using over
2000 nodes for a Gaussian quadrature, which slowed down the computation time.

In this paper, we will find a method for computing F(z) to almost 50 places for all bases b > e'/¢. This
method converges much faster in terms of the number of calculations than [7], since only 180 nodes are
needed to obtain this accuracy for b = e. In the process, we will be able the prove the uniqueness conjecture
proposed by [7].

2 Kneser’s solution

We will begin by reproducing Kneser’s result from [5]. Actually, Kneser only considered the function e*, so
we will generalize his result to include b*. We also will reformat his solution to make it easier to refer to
different aspects of his solution later on.

We begin by solving the Schréder equation op,(b*) = sop(z), where s is the derivative of b* at a fixed
point [13]. We are only interested in the case b > e!/¢, for which there are only complex fixed points. Then
we let Ly, be the complex solution of the equation b* = z for which (L) > 0, with (Lp) minimized. Then
s = In(Lp) = LpIn(b). There is a unique solution to Schréder’s equation which is analytic at Ly, and for
which o} (Ly) = 1 [6]. By equating coefficients of the power series, we find that
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Unfortunately, it is unclear what the radius of convergence will be for this series. However, we can easily
extend the region of convergence to cover the upper half plane, since this is in the basin of attraction for the



fixed point L; of the function log,(z). That is, if we continually apply the principal value of log;, to a point
in the upper half plane, it will eventually converge to L. Hence, we can define o, another way:

op(z) = lim s"(logy (2) — Ly),

n—o0

where logy (2) means we apply the principal branch of log,(z) a total of n times. In fact, this representation
b
of 03,(z) also works on the real axis, except for z = 0,1, b, b, bbb,bbb Yo

Next, we let ¢p(z) = In(op(2))/In(s), so that ¢p(z) will solve Abel’s equation 9y (b*) = ¢p(2) + 1. We
can compute

In(z — L) s s2(1 + 55)
—L
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4 2 2
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We can compute 1, (z) very quickly to high levels of precision by the formula

o(z) = lim 2 Tm(logr (2))

n—00 ln(s) ’

where T,,,(z) is the m-th degree Taylor polynomial for o,(z). Increasing m will increase the rate of conver-
gence.
Next, we find the inverse function 1, ' (2) = o, ' (e*™#). This function will satisfy the functional equation

btz 4 1) = b @),

By reversing the series for o,(z), we find that
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As long as b > e'/¢, then R(In(s)) > 0, so we can express ¢, ' (2) as a limit.

’l/)b_l(z) = nli)rréo exp?(Lb + e(Z*n) 1ns).



Figure 1: The set T is shown in the solid lines for b = e. The set T} also includes the dotted lines.

In fact, we can speed up the convergence by considering the limit
Uy H(2) = lim_ exp} (S (elF79)), 1)
n—oo

where S,,(2) is the m-th degree Taylor polynomial for o, '(2). We can use this limit to show that ¥, ' (2) is
an entire function for b > el/¢.
Since 93(2) is defined for real numbers except z = 0, 1,b, b®, bbb7 ..., we can let Ty, be the set {¢p(x) | x €
R — {0,1,b,b%,...}}. Note that if 2 € Ty, then z + 1 € T}, as well, since 1, (b*) = ¥p(x) + 1. If we let T} be
the set
T,={2—k|z€T,and k € Z*},

then T} will be an extension of the set T3, so that the pattern extends to the left as well: z—1 € T} whenever
z € T}. Figure 1 shows these two sets for the case b = e.

Let Ry, be the simply connected open set above T}. Let zp be any point in Ry. By the Riemann mapping
theorem, there is a bijective holomorphic mapping from R}, to the upper half plane. By following this mapping
with a Mobius transformation z — (az+0)/(cz+d), ad—be > 0, we can get a holomorphic mapping p; from
Ry, to the upper half plane such that py(z0 + 1) = pp(20) + 1 and pj (20 + 1) = p;(20). Since the region R is
periodic, we can define the mapping py (pgl(z) +1) — 1 sending the upper half plane to the upper half plane,
which will fixes the point p(z0), and whose derivative at p(zg) is 1. Thus, py(p, *(2) +1) — 1 = z for all z,
allowing us to establish the identity p,(z + 1) = py(2) + 1 for all z € Ry Likewise, p, ' (z + 1) = p; ' (2) + 1
for all z in the upper half plane.

Even though p,(z) is only defined for the region Ry, since the boundary T is piecewise smooth, pp(z)
can be extended continuously to the set 7. Since we can add a real constant to py(z) to produce a function
with the same properties, we will add such a constant so that

Jlim py (v (@) = =2

Finally, we consider the function #y(2) = 1, *(p, ' (2)). This will be defined for the upper half-plane, and
in this region
—1 -1
rp(z+1) =y (o 1 (2) +1) = 0% 2 () = preo3),



Furthermore, for © > —2, x ¢ 7Z, rp(x) is defined, and in fact is real. Since lim,_, o+ kp(z) = —o00, we
see that lim,_,_1+ kp(z) = 0, lim,_,q+ kp(x) = 1, lim,_,1+ ke(x) = b, etc., so we can extend the definition
of kp(x) by continuity to all x > —2. Finally, since rp(2z) sends real numbers to real numbers, we can
analytically extend kp(2) through complex conjugation ky(Z) = kp(2) to the cut plane

Co=C—-—{zeR|z< -2}

Then everywhere in this cut plane, we have (2 + 1) = b (2),

3 The Uniqueness of Kneser’s solution

Both [7] and [14] conjecture that there is a unique analytical function F(z) that satisfies F(z + 1) = b7'(?)
on C_g for which F'(Z) = F(z). Clearly Kneser’s solution r(z) satisfies these conditions, but the question
is whether any other functions could also satisfy the same conditions.

To answer this question, we need to understand the properties of the py(2) function used in the construc-
tion of Kneser’s solution. Since pp(z + 1) = pp(z) + 1, the function py(z) — z will be a periodic function of
period 1. Thus, there is a complex Fourier series for py(z) — z:

o0
py(2) — 2z = Z e k=,

k=—o0

But pp(z) is also a conformal mapping from the region R} to the half plane, and so it solves a fluid flow
problem on the region R;,. Although we can expect major changes in the fluid flow near the boundary 7T},
we see that the fluid flow will approximate a linear flow far away from the boundary. Thus, py(z) — z will
approach a constant as $(z) — oo. In order for this to happen in the Fourier series, we see that ¢ = 0 for
all £ < 0. Thus,

0o
Pb(Z) =2+ § cke27rzkz =2+ ¢ +0162w1z + 02647”2 +0366w1z I
k=0

It is possible to reverse this series, and find a series for p, ' (z):

pb—l(z) =2+ dO 4 d1€27riz + d2647Ti2 + dseﬁm’z NN (2)
where
dy = —co
dl — _Cle—2wic0
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500 250 )
ds = < — ¢5 + 10micocs + 10micy ey + 50m2cic3 + 50m2cles — TTFSZ'C?CQ - 37r4c?> e~ 10mico
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Because the function pb_l(z) is analytic in the upper half plane, the auxiliary function
gp(2) = do + dyz + doz® +d32® + dyz* + -+ (3)

will have a radius of convergence of 1. Then p, '(2) = z + gy(e?™%).

Proposition 1:
Suppose that F(z) is an analytic function defined on C_ for which F(z+1) = b¥(*) F(0) = 1, and that
F(Z) = F(z). Suppose further that for the region where S(F(2)) > 0, ¢»(F(z)) can be expressed as

1/Jb(F(Z)) =24 kae%rikz.

k=0

Then F(z) = kp(z) for all z € C_s.

Proof:
Note that
Ky H(F(2+ 1)) =k, L (0FP) = ki H(F(2)) + 1.

Thus, ;' (F(z)) — 2 is periodic with period 1. Since ;' (2) = py(¥5(2)), we find that

Ky, 1(F(z)) =y (z + Z fk€2m'kz> =24+ Z hye?miks
k=0 k=0

where we can determine hy, formally from the ¢; and fi. Since F(Z) = F(z),

ﬂb_l(F(Z)) = W =z+ Z hke*%rikz.
k=0



By the uniqueness of the Fourier coefficients, this forces hj, = 0 for all k # 0. Thus, s, '(F(2)) = 2+ ho. But
Ky, H(F(0)) = K (1) = 0, so hg = 0. Since k; ' (F(z)) = z whenever S(F(2)) > 0, we see that F(2) = p(2)
for at least some region, and by analytic continuation, F'(z) = kp(z) for all z in C_,.

i

Proposition 2:
Suppose that F(z) is an analytic function defined on C_5 for which F(z+1) = b¥(*), F(0) = 1, and that
F(Z) = F(z). Suppose that for all z € R,

lim F(z+iy) = L.

y—r—+o00

Then F(z) = kp(z) for all z € C_».

Proof:

Since ¢y (F(z + 1)) = ¢, (b¥®)) = ¢ (F(2)) + 1, we see that 1, (F(z)) — z is periodic with period 1. Since
(L) > 0, by the limit property, we have that $(F(z)) > 0 whenever 0 < R(z) < 1 and $(z) > M for
sufficiently large M, and by periodicity, we can define 1, (F(z)) whenever $(z) > M. By the Fourier series,

p(F(2)) = 2+ Z Fre2mike

k=—00

Thus,

F(Z) =¢;1 <Z+ Z fke27rikz> .

k=—o00

If fi # 0 for some negative k, then as (z) — oo,
|fk62”kz| —oo as  $(z) = .

If there are many such terms, they will have different exponential growth rates asymptotically, so such terms
cannot cancel out asymptotically. Thus

oo
Z fkeQTrikz

k=—o0

—o0 as $(z) = .

Also note that the argument of this sum will depend on the real part of z. Thus, there is a path C' going
towards 4ooi for which v, (F(2)) is real and positive along this path. That is, for every y > 0 there is an z

such that with z = = + 4y,
[ee]
arg (z + Z fk62”kz> =0.

k=—o0

But then along this path,

z—+00

lim F(2) = lim ¢, " <z+ > fkeQ”““Z> = lim v, " (2),

k=—o00

and lim; o ¥y 1(z) does not exist, since the real part is unbounded, and the imaginary part is negative.
(¢, ' maps the real axis to the set 7;.) This contradicts the fact that I(F(z)) > 0 whenever J(z) > M.
This contradiction shows that fi = 0 for negative k. So by Proposition 1, F(z) = kp(2).

O



Corollary 1:
Let zg € C_o. Then kyp(20) is a holomorphic function of the base b for b > elle.

Proof:

First consider the case I(2p) > 0. Because of uniqueness, each of the Fourier coefficients d; for i > 1 will
be a holomorphic function of b. Unfortunately, dy is not uniquely defined because of the branch cut of ¥,(2).
Adding 2k7i/ In(s) to do, where k is an integer, produces another valid dg. But by careful manipulation of
the branch cut of 1,(z), we can make dy a holomorphic function of b.

Because g,(2) has a radius of convergence of 1, the series for g,(e27%*°) will be absolutely convergent for
each b, 0 g,(e?™*0) will be a holomorphic function of b. Hence, p, '(20) is holomorphic. It is already estab-
lished [4] that ¢, '(2) is a holomorphic function of b for b > €'/, so ry(20) = 15 *(p, ' (20)) is holomorphic.

Complex congugation handles the case with $(zg9) < 0. For zg real, zo > —2, we can consider the limit
of kp(20 + 7€) as € = 0T. Since this converges uniformly to p(20), ks(20) is holomorphic.

O

It is likely that kp(20) has a logarithmic branch cut at b = el/¢, since the tetration is not uniquely defined
for b < el/¢. [10]

4 First approximation

The goal of this paper is to produce an iterative method for calculating x(z). However, this iterative method
requires having a first order approximation to begin to process. In [7], the first order approximation was a
piecewise defined function which works for b = e, but we want to generalize the process to arbitrary b. We
can do this with a polynomial approximation.

Rather than using Abel’s equation a(f(z)) = a(z) + 1, we can create a homogeneous equation by letting
A(z) = 1/d/(z). Then A(z) satisfies Julia’s equation [4]

A(f(2)) = A2)f'(2)-

In the case where f(z) = b, this becomes Ay (b*) = Ap(2)b* In(b). One advantage of using Julia’s equation
over Abel’s equation is that A,(z) approaches 0 near the fixed point L;, although the solution we are looking
for is not analytic there. Note that Abel’s solution goes to infinity as z — L.

If we force the Maclaurin series
o0

Mp(2) = Z cnz"

n=0

to satisfy A(b*) = A(2)b* Inb, we find that, if we assume ¢q = 1, the other coefficients satisfy

1 1 1 1 1 - 1 Inb—1
0o 2 3 1 5 o nb
SRR 0 16 25 o b
—2 8- 27— i 64 125 e l=1 mp |- (4)
12 24 24
e

where the pattern for the matrix is m; ; = j (Inb)1=7(i — 1)!/(i — j — 1)!. For each n we can solve n
equations with n unknowns to find an n** degree polynomial approximation for \y(z). Because the matrix
involves only real numbers, the polynomial approximates will be real whenever z is real.



Base Number of digits of precision
b Py = Mp(0) d=100 | d=200 | d =300 | d =400 | d =500
3/2 | 1.599261338397936 31 41 44 47 49
2 1.283082409572121 17 20 22 23 24
e 1.091767351258321 17 17 18 18 19
10 | 0.731477430771517 11 12 13 14 15

Table 1: This shows how the polynomial approximates of A\;(z) seem to converge. Since p;, is calculated by
an integral from 0 to 1, this gives a good indicator of the precision within this interval. Notice that the rate
of convergence slows down considerably as base b increases.

The only drawback to using the homogeneous Julia’s equation is that we must normalize the solution by
multiplying by a constant pp so that

/1 1/xp(2)dz = 1.
0

This is easily done numerically for each polynomial approximates, allowing us to approximate the solution
of Abel’s equation with ap(z) = [1/M\y(2)dz + C. It is an open problem as to whether the normalized
polynomial approximates converge to a function, although table 1 seems to indicate that indeed there is
convergence as the degree of the polynomial increases. If it does converge, and we can pick the constant C'
so that ap(1) = 0, then by [14] this solution will be ;' (2).

Even though we cannot prove convergence, for many values of b we can numerically see that it seems to
slowly converge to a single function. For example, when b = e, we get

Ae(2) = 1.091767351258320991801 — 0.5944393947320601696982 + 0.7186644272080334641982>
— 0.1584942997576746643002> + 0.0428411527425711031992* — 0.0101275551702667994262°
+ 0.0016902677598307292552° — 0.00013500254984977466527 4+ 0.0000094937914041194622°
— 0.0000125197670057482092° 4 0.0000024590171381860542'° + 0.0000014517921262321732"*
— 0.0000002780380292035322% — 0.0000002814498831920432'3 + 0.0000000311428659203632'* + - - -

5 The Cross-Track Method

In this section we will show how given one approximation to the Kneser solution x;(z), we can use a
combination of the Fourier series and Cauchy’s contour integral formula to find an even better approximation.
By iterating this process, we can numerically evaluate Kneser’s solution to remarkable precision.

We will use a much smaller contour than what was used in [7], which will increase the speed of the
computation. Since kp(z) is analytic, we have the Cauchy contour integral

kp(2) = ! f)ﬁb(t) dt,

T omi t—2z

where the contour (2 consists of 4 parts, where t = z + iy:
A: integrate along the linez =1 fromt=1—4itot=1+1.
B: integrate along the upper half of the circle 22 + (y — 1)? = 1 counterclockwise.
C: integrate along the line x = —1 fromt=—-14+itot=—-1—1.



Figure 2: The contour €2 along with the interior sample points that will be used to numerically compute the
contour integral. The points along the horizontal part of the cross will later be used to compute the Fourier
coefficients.

D: integrate along the lower half of the circle 22 + (y + 1)? = 1 counterclockwise.
The contour 2 is shown in figure 2, and resembles a racetrack.

Note that along the integral A, we can let t = 1+ iy, and use the fact that ry(z + 1) = b**) to simplify.
Thus, we see that

1 t 1 1 preeiy)
—% ) g L[
2 Jat— 2 2 J_1 14y — =2
Likewise, integrating along C can be done by letting ¢t = —1 + 4y, along with the identity k,(z — 1) =

logy (kp(2))-

1 k(1) g — L /1 logy, (ks (iy)) dy

We can put these two pieces together to form the function

- [ (),

T o \1l4+wy—2 —-14+wy—=z

Integrating along the curve B is more tricky. We can use the substitution ¢t = i + €’ to produce

T (s 0 00
G(z)—if K (t) it 1 / kp(t +e¥)e o,
B 0

T 2mi t—2 " " or i+ e —z

We can use symmetry to do the last piece of the contour. It is clear that

10




Putting the pieces together, we see that for z within the racetrack (2,

kp(2) = H(z) + G(2) + G(Z). (5)

The goal is to use equation 5 to produce a more accurate numerical approximation of x;(z) from a
previous approximation. We can use a Gauss-Legendre quadrature to calculate H(z). For a fixed integer
n, we will consider 2n Gauss nodes along the imaginary axis from —i to ¢. Hence, if we have a previous
approximation of kp(z) for these 2n nodes, we can approximate H(z).

Numerically approximating G(z) is tricky. We can again use a Gauss-Legendre quadrature with 2n nodes,
provided that we have a way of approximating kp(z) for $(z) > 1. This can be done with a Fourier series.
In the upper half plane, ry(2) = ¥, ' (p, ' (2)), s0 ¥p(ks(2)) — 2 = p, ' (2) — 2 will be a periodic function of
period 1. By equation 2, we have that

wb(ﬁb(z)) = dO +d16271'iz + d2647riz +dge(STriz 4,

so we can compute the coefficients via
dy = / (o (ko (2)) — 2)e 2% 4z (6)
P

where the contour P covers one period. Note that P must be in the upper half plane (the domain of pb_l(z)),
within the contour €2, and as we shall see, must be below the line §(z) = 1 to allow accurate computation of
G(z). Also, since 9p(z) has a branch cut, care must be taken to ensure that the branch cut is not crossed in
the integral. Thus, the optimal location for P is the line from (—1+44)/2 to (1+4)/2. The preferred integration
techniques for dealing with smooth periodic functions are either the trapezoid rule or the midpoint rule [3].
We will use the midpoint method with n nodes to numerically compute the coefficients di. These nodes form
the horizontal part of the cross in figure 2. Once we have sufficient number of coefficients, we can estimate

G(z) with
™ =10 =1/ i0Y) 10
G(z)zi/ Uy, (Rb (Z'a+e ))e a8,
2m Jo i+e —z

using equation 2 to calculate pb_l(z). We can now formalize the procedure for numerical calculation of kp(2):

1) First, we pick a value of n. This will determine the 3n nodes creating the cross formation. Note that if
we have one approximation Fj(z) for Knesser’s solution known at the 3n nodes, we can use the Gaussian-
Legendre quadrature on equation 5 to find a better approximation Fj41(z) evaluated at the same 3n nodes.
Actually, only 2n integrals are needed, since we can use the property that Fy1(Z) = Fj11(2) for the nodes
below the real axis. We will label the Gauss nodes along the positive imaginary axis as y; to y,. The equally
spaced nodes in the horizontal part of the cross will be labeled as =1 to x,,.

2) We will use the approximation from section 4 to create the seed values of Fy(zy) and Fy(yx). For each of
the nodes yi, we use Newton’s method to find a z such that

1
/0 mdt:yk (7)

using a numerical integration for each iteration step. Here, we use a high degree polynomial approximation
for A\p(t). For y1, we can use z = 0 as the initial Newton’s method seed, and for other y; we can use the
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resulting z of yr_1. However, equation 7 has y, = 0 producing z = 0 instead of z = 1, so we will fix this by
letting Fy(yx) =~ b*. In a similar way, we can compute Fy(z) for the points on the horizontal piece of the
cross. This gives us our initial approximation.

3) We now assume that we have one approximation F};(z) known at all of the 3n nodes of the cross. To find
a better approximation, we first must find the approximate coefficients dj, assuming that ¢, (F;(z)) — z is
periodic. Since we are integrating from (—1+4)/2 to (1 +4)/2, we can substitute z = z + /2 to find

1/2 ‘
dy = [ B +1/2) 2 iy ®

being careful to move the branch cut of ¥,(z) so that the branch cut is not crossed in the integral. Since we
are integrating a periodic function, the midpoint rule is the best approach for numerical integration. Because
this integral is only half the size of the other integrals we are doing, we only need n nodes for this integral,
shown in figure 2 by the thick black equally spaced dots along the horizontal segment from —1/2 + i/2 to
1/2 +4/2. Since the series in equation 3 has a radius of convergence of 1 (and in fact, it converges for most
points on that circle), we know that |dj| is bounded. Because of the €™ in front of the integral, we see
that the integral in equation 8 must decrease exponentially with k. Hence, we anticipate truncation errors
in computing this integral for large k. However, since we are only evaluating the series in equation 2 for
points with $(z) > 1, each coefficient dj, will be multiplied by a value of o(e~2#™). Therefore, the required
precision of the dj decreases faster that the truncation errors increase.

However, there is still a limit to how many terms of the series we can compute accurately. As k increases,
the number of cycles in the integrand increases, and the number of sample points is always n. We need at
least three sample points per cycle if we are to avoid problems with resonance. Thus, we can only compute
the first [n/3] terms of the Fourier series to any degree of accuracy. If we let

[n/3]
RJ(Z) =z 4+ Z dk,je2kﬂiz,
k=0

we find that we still should have 2n7/(31n(10)) ~ 0.9096n digits of precision in calculating p(z) for (=) > 1.

4) We now have a way of numerically evaluating G(z). Using the Gaussian quadrature with 2n nodes, we

can approximate
1 ™ o~ (R (i + e9))ei
Gj(z):—/ VTR e .
271— 0

i+ef —z
Finally, we use the Gaussian quadrature again with 2n nodes to find the approximation of H(z), which we
can call H;(z). Putting the pieces together, we form

Fi(2) = Hj(2) + G;(2) + G;(2).

However, we have another complication. We need to be sure that the initial condition F'(0) = 1 still
holds. In [7], this issue was ignored until the iterations had converged, and then an adjustment was made at
the end. However, we can obtain faster convergence if we incorporate the initial condition in each iteration.
It is not hard to see that £, (0) = A\p(1) = Ap(0) In(b). Thus, if we let

Fja(0) -1

A4 = 50 )
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Base Minimum digits of precision
b n=10|n=20 | n=30 | n=40 | n=50 | n=060
3/2 8 16 26 33 40 50
2 8 15 24 32 41 50
e 7 14 23 33 41 49
10 6 16 24 32 41 49

Table 2: This shows the accuracy of the cross-track method for various bases and number of nodes. We used
9 key values within the contour Q, namely 0, +1/2,i/2, (i £1)/2,4, and i + 1/2, to determine the amount of
accuracy within €.

then Fji1(—Aa;) will be much closer to 1 than Fj;1(0). Then we evaluate Fj;1(z — Aa;) for each of the
nodes of the cross, and we are ready for the next iteration.

5) Repeat steps 3 and 4 for a fixed n until the digits stabilize to m digits of accuracy for all of the values
of Fj(xy) and Fj(yr). When b = e, we gain a digit of accuracy for every two iterations. One could, in fact
increase n dynamically (between steps 3 and 4), but for our purposes we kept n fixed so that we can compare
the resulting accuracy as a function of n.

6 Numerical Results

For most values of b, the iterations quickly converge to Fi(2), which still depends on n. Also, as n increases,
the precision of Fi,(z) also increases in what seems to be a linear function of n. We explored 4 different
bases of b to give a large range of behaviors. The base b = 3/2 is very close to the borderline case b =
el/¢ ~ 1.444667861. The base b = 2 is special because it allows us to generalize the Ackermann function [2].
In fact, A(4,z) = ka2(x + 3) — 3 for non-negative integers, so the tetration with base 2 allows us to define
A(4, z) for complex z. The base b = e could be called the natural tetration, and the base b = 10 might
be called the common tetration, since it seems to be the standard for writing extremely large numbers. If
a = K1y (2) ~ 0.393113, then ry1g(a + 1) = 100, #10(a + 2) = one googol, r10(a + 3) = one googolplex, etc.

Table 2 shows how the precision of F,(z) varies with n for these 4 values of b. With only n = 60, which
corresponds to 180 nodes on the cross, we obtain nearly 50 places of accuracy regardless of the base b. This
is much more efficient than [7], which used over 2000 nodes to obtain 14 places of accuracy. In fact, with the
exception of b = 3/2, the whole process can be computed in Mathematica in less than an hour. The issue
with b = 3/2 is that v3/5(2) and 1/)3_/12(2) are much harder to compute, due to the large number of iterations
required to get past the “bottleneck”, as described in [12]. In fact, the internal precision of the operations
had to be increased to 300 digits to ensure the required accuracy of the output.

Although we have not proven that Fi,(z) does not converge to a single function as n increases, it is clear
that if it does converge to a function, this function satisfies the conditions of proposition 1. Hence, this
function would be Knesser’s solution, xp(z).

It would be prudent to compare the values of table 3 to the results of [7]. This paper computes a tetration
to 14 places, and these 14 places agree with table 3 except for an occasional truncation error. For example,
[7] has F'(0.1) = 1.11211143309340, whereas rounding the result of table 3 gives k.(0.1) = 1.11211143309341.
Otherwise, the two functions are in agreement, even for complex numbers. But this is to be expected, since
by Proposition 2, the function that the method of [7] converges to, and the function the Cross-Track method
converges to, are one and the same function.
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K3/2(2)

ko (2)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.00000000000000000000000000000000000000000000000000
1.06284234873464343242289459256119440882976123516299
1.12197875568875728079040779112109514777130047307416
1.17780836410921504353544685230709891229298742446304
1.23067512258151711310509700227763973572942797794426
1.28087727794027296901334969942973068453795309304964
1.32867494912032626797797189335573620784825567374044
1.37429622531967779177219590076610441282249214921921
1.41794211745233481475987912671061877124633456639421
1.45979060989323733944098866385839807594555647625269
1.50000000000000000000000000000000000000000000000000

1.00000000000000000000000000000000000000000000000000
1.08911805218112025270490725132092334698151174764338
1.17897679256739584330016397359092167205106041286702
1.27014554317420866333373853190959534081824236612215
1.36320901804500919413239547791600793658449949895910
1.45878181603642170068397166103858713529660660533091
1.55752379162514183329015532378804817435782151235363
1.66015710068592536726443932711298760312423656063827
1.76748581883697804348992764509491283873499903494935
1.88041920988427273592496515421331959090627231185896
2.00000000000000000000000000000000000000000000000000

Ke(2)

1110(2’)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.00000000000000000000000000000000000000000000000000
1.11211143309340786806281154809577742092498942802955
1.23103892493160892985997172331914319937183280624232
1.35838369631113760894227410836164545709035212956835
1.49605193039935318790659927009656028282399882117554
1.64635423375119458097192403159211451820531164896904
1.81213853570187244635577738019837353916526213342129
1.99697132461830684783516761510974187581229993180819
2.20538955455275443300985335146549436572740834624883
2.44325744833852525438143378194583129004563409061726
2.71828182845904523536028747135266249775724709369996

1.00000000000000000000000000000000000000000000000000
1.18401002462473366521876710905460278758082638826212
1.40613758361569542577222810113729594351342971924995
1.68022722088639640278923484977936612769290055484479
2.02675702838861894055187697613952349693690656588769
2.47700560634496477508778170585465604320207500513487
3.08052527175548202049766020624261710559268543468798
3.91919641926272841954547424690150065723791857599574
5.13515284083318646108725226635526761431235114029797
6.98996117953471489851587499189704403767001833312530
10.00000000000000000000000000000000000000000000000000

Table 3: Table of values for s (2) for various real z and various bases b.

For real values of z, the tetration can be computed using table 3. The properties ry(z + 1) = b ) and
kp(z — 1) = log (kp(z)) can be used for values outside the range of the table. For complex values of z, the
best way to describe the tetration is to give the Fourier coefficients for ¢, (ks(2)) — z. These are listed in
table 4. With these coefficients, we can compute rp(2z) with the formula

Iib(z) _ ,(/Jb—l (Z +d0 +d1627riz +d2e4wiz 4 d3€6ﬂ'iz 4 d4687riz 4. _)’

using equation 1 to compute v, '(z). The coefficients given can be used to compute r(2) to 25 places for
S(z) > 1.
In [7], it was assumed that

:‘{e(z) ~ L+ eln(s)z—i—r

as §(z) — oo for some value of r. We can now see that r = dg In(s), so for the base b = e,

r =

1.07796143752792144101783319873098224011431901617802

— 0.946540963947823119711724749170560096088881859745121

This indicates that the results of [8] are accurate to 12 places.
Finally, since we can compute x;(z) accurately for all values in the cut complex plane, we can form

a contour plot of the functions.

Figure 3 shows the contour plots for b = 2, b = e, and b = 10. The

Mathematica notebook that generated the kp(z) function, which also has the commands that generated the
graphs of figure 3, can be found at

http://myweb.astate.edu/wpaulsen/tetration.html

Also included at this site are color versions of figure 3.
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do:-7.48349134602615816221240590112892949121257087361804 —1.999963089260046741280061343982266874489137898245891
dy: 0.00175719602010081289134016848037190381069435975908 +0.08922069482651200143644599719182093621345996998707 %
da: 0.00114973579460515700378082226818030808987769458475+0.037408388160017299292279367815753025820550025959087%
d3: 0.00085530854414282878357440931701522778550198077716+0.02249417411214745232545293819243592130174149895983 4%
dy: 0.00068263449624615485430044544408249403718332385805+0.01569782958096839418797924841966772195860226898400%
ds: 0.00056892856181940700919842342751367521785060031106+0.011887071153748367185620323997333886707625320890601
dg: 0.0004882407640328371414755387586397014714979472924 +0.0094780297534490830554196440616022773725392177518 i
d7: 0.00042792713064786297541137578548508120998432777 +0.007830654198272824337752425328626232910815790306 4
dg: 0.00038108618026262987265221215532208086259376 +0.0066398033790883012838786039076953404501776761 %

[S][9)

dp:-1.23806941407137489416696874207372877930684538882043 +1.24816132484492036599940507052693933897696678427591%
dy: 0.00286464164572986547819494250908485877459797429482+0.090014162560863201546597644651413154759997047231297
da: 0.00163613443662158961033829265952002846988856456412+0.03772961751248719901302864548541206650116812507673 %
d3: 0.00115187868327318893374980524840794988974884711946 +0.022683070574221956862080267843278104612628451426407
2 dy: 0.00089051359032509874097991792557370274398148307975+0.015827492722764618005007096604591628761248447893721
ds: 0.00072641184418945426262557165104553685863477414090+0.01198396934354393924419365690312310327429484446214 4
de: 0.0006136169937465890052224025336813938313920452967 +0.0095544422163839476767344623444772704534044979821 i
d7: 0.000531244814400172570041708270727035080063976776 +0.007893188315673435338155101204325171060453030729 4
dg: 0.0004684141135809476704389174774561728206307295 +0.00669238659280844335600842687846233592743592746 %

dp:-0.48841508844379660330741456880098280707763662392493 +0.92230686292605693600282355599344017140495361014379%
dy: 0.00385157873541120442039936410939458584167069835359 +0.09056477795411682044547667460610562298035940034753 %
da: 0.00210091678690281487298665528173351414771188727246+0.03795624815247508554188893672201581078029301397502%
ds: 0.00144754775842178512032205636083702888354249030505+0.02281729713002375502899972915432846601683536028143%
e dy: 0.00110438609921276373489848278782305836622016411857+0.015919976169422388374193454128686982804977184765764
ds: 0.00089259309933704127166873673114391469843246965762+0.012053223056956928649750085632871071535252072111344
de: 0.00074877392018061530497580449510529402230704886550+0.009609109527693034937264641056222933250156351459807
dr: 0.000644707067590377697848802688285074344003166050 +0.007937942295658218859174134769344880470771417123 4
dg: 0.00056590616417905901813446692767287237106611969 +0.00673001529218777005426227518796589191077670063 4

do: 0.17799316199455913031946620533448468257225716644363 +0.42824054091004017448062454919411317805448311007795%
dy: 0.00593749112447128122510204103427646057384240098461+0.09176334001008019563090867214482854204891666828926
d2: 0.00308121630633651465509560498569969359412216583919+0.03846155851094691064712005762290158915023254809357 %
d3: 0.00206853201498188485911547589423647690560552702703 +0.02312209360226542373053477657528160550325978012831%
10 | da: 0.00155196578198029035025888093032518949193908503953 4+ 0.016133167185261008358090702937214364723817454920277
ds: 0.00123933559770777876011608432616740702809199061860+0.012214933338069346004942430688176700647431882771361
dg: 0.00103007920019430831393267676049513630501474785622+0.00973821026718033427634202387289332451160586313382%
d7: 0.000880353108755134051760086215338175652449026100 +0.0080447051392493282650388799338260005524429899481 4
dg: 0.00076800610104860938597838201430137184225876054 +0.006820606592296152855983866087877088167089753177 4

Table 4: This table shows the coefficients d;’s for various bases. The base b is indicated on the left. In all
cases, the coefficients slowly converge to 0, since the series in equation 3 has a radius of convergence of 1.
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0,+1,4+2, £3,+4 are shown for various b.

Figure 3: Level curves for R(kp(2)) and S(kp(2))
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7 Conclusion

We have found a way to numerically approximate ;(z) to arbitrarily high degree of accuracy. One could
produce 100 digits of precision in a few hours. But the technique introduced here can be used to solve many
other equations. Most functional equations can be reduced to solving Abel’s equation a(g(z)) = a(z) + 1
for a given function g(z) [11]. The cross-track method could be used to calculate a~!(z), which in turn can
be used to calculate a(z).

But this technique also opens the door for new discoveries in the field of tetration. We saw in Corollary
2 that for a fixed real xg, ky(xo) can be thought of as a real analytic function of b. Then there is a unique
way of extending this function into the complex plane. Hence, we could define ky(2) for complex b, (although
there are bound to be logarithmic singularities appearing). This would give us a firm definition of complex
tetration.

There is also no reason why we cannot use the cross-track method to solve F(z + 1) = ku(F(z)). This
would give us a complex pentation, which is repeated tetration. We would need to first compute the power
series for kp(2) at a fixed point, and it would be harder to come up with an initial approximation. This was
actually done in [9] for base e, but perhaps this can be explored in a future paper with different bases.
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