2. Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Department of Mathematics & Statistics

ASU
Outline of Chapter 2

1. Sets
2. Set Operations
3. Functions
4. Sequences and Summations
5. Cardinality of Sets
6. Matrices
2.1 Sets

Definition

A **Set** is a well-defined collection of distinct objects, called elements or members of the set. **Well-defined** means that there is a clear rule that enables us to determine whether a given object is an element of the set.

- Notations
 If \(a \) belongs to \(A \), we write \(a \in A \). If not, we write \(a \notin A \).

- Three ways to describe a set
 1. **List(Roaster) method**: all elements are listed between braces. **Ex**: \(A = \{a, b, c\} \)
 2. **Set builder notation**: by stating the property that elements must satisfy. **Ex**: \(\mathbb{R}^+ := \{x \in \mathbb{R} \mid x \geq 0\} \)
 3. **Interval notation**, especially for real numbers. **Ex**: \([a, b]\) or \([a, b)\)
Definition

A = B if two set A and B have the same elements regardless their order.

Example 1

1. \{1, 3, 5\} = \{1, 5, 3\} = \{1, 1, 3, 5, 5\}

Venn Diagram

is convenient to understand relations between sets. The universal set \(U \) is represented by a rectangle. Normally circles are used to represent certain sets and points are used to represent the particular elements of the set.

Example 2

Use to a Venn Diagram to show that if \(A \subset B \) and \(B \subset C \), then \(A \subset C \).

- Notations for the empty (null) set: \(\emptyset \) or \{\}. Don’t be confuse \{\} and \{\emptyset\}. Those are not the same!
Definition

The set A is a subset ($A \subseteq B$) if every element of A is also an element of B.

- We can use the quantification to define a subset:
 $$\forall x (x \in A \rightarrow x \in B)$$

Theorem

For every set S, (1) $\emptyset \subseteq S$ (2) $S \subseteq S$.

- When we want to emphasize that A is a subset of B but $A \neq B$, we write $A \subset B$ and say that A is a proper subset of B.
 We can also use the quantifications to define a subset:
 $$\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$$

is true.
Definitions

1. The **cardinality** of a set S means the number of elements in the set S. It is denoted by $|S|$ and $|S| = n \geq 0$ for all integers.
2. If n is the finite number, then S is called a finite set. If S is not finite or $(n = \infty)$, then S is called an infinite set.

Example 3

2. $|\emptyset| = 0$
3. $S = \{s \in \mathbb{N} \mid 0 \leq s \leq 5\}$ Then $|S| = 5$
4. $|\mathbb{Z}| = \infty$.

Definitions

1. For a given set S, the power set of the set S is the set including all subsets of the set. The power set of S is denoted by $\mathcal{P}(S)$.
2. If $|S| = n$, then $|\mathcal{P}(S)| = 2^n$.

Example 4

1. Let $S = \{0, 1, 2\}$. Then find $\mathcal{P}(S)$ and $|\mathcal{P}(S)|$.

jahn@astate.edu
Definitions

1. The ordered n–tuples (a_1, a_2, \cdots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its nth element. In particular, ordered 2–tuples are called ordered pairs.

2. The **Cartesian product** of A and B, denoted by $A \times B$, is the set of all ordered pair (a, b) such that $a \in A$ and $b \in B$. Thus

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

Example 5

1. $A = \{0, 1\}$ and $B = \{x, y, z\}$. Then find $A \times B$.
2. Show that $A \times B \neq B \times A$.

jahn@astate.edu