3.2 Growth of Functions

- When we analyze some algorithms, we may want to consider the number of steps. For example, assume that the number of steps to complete a mathematical problem of size \(n \) is given by \(f(n) = 3n^2 + 4n - 1 \). If we ignore constants and slower growing terms, we can say that \(f(n) \) depends on the dominating term \(n^2 \) for sufficiently large numbers \(n \). How can we describe it, using a mathematical notation? The growth of functions can be written using big-\(O \) notation.

Definition

Let \(f \) and \(g \) be functions with the domain \(\mathbb{R} \). We say that \(f(x) = O(g(x)) \) if there is a constant \(C > 0 \) and \(k \in \mathbb{R} \) such that \(|f(x)| \leq C |g(x)| \), provided that \(x \geq k \). \(C \) and \(k \) are called witnesses.
The growth of functions commonly used in Big-O estimates. Have a look at Figure 3 in page 211.

Theorem 1

Let \(P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \), where \(a_i \in \mathbb{R} \) for \(0 \leq i \leq n \). Then \(P(x) = O(x^n) \).

There are three important rules to find big-O notation.

Theorem 2

1. Suppose that \(f_1(x) = O(g_1(x)) \) and \(f_2(x) = O(g_2(x)) \). Then \((f_1(x) + f_2(x)) = O(\max(|g_1(x)|, |g_2(x)|)) \).
2. Suppose that \(f_1(x) = O(g(x)) \) and \(f_2(x) = O(g(x)) \). Then \((f_1(x) + f_2(x)) = O(g(x)) \).
3. Suppose that \(f_1(x) = O(g_1(x)) \) and \(f_2(x) = O(g_2(x)) \). Then \((f_1(x)f_2(x)) = O(g_1(x)g_2(x)) \).
Examples

In problems 1-4, find witnesses C and k.

1. Let $f(x) = x^2 + 2x + 1$. Show that $f(x) = O(x^2)$.
2. Determine whether the followings can make $f(x) = O(x)$.
 (1) $f(x) = 10^{10}x + 1$ (2) $f(x) = 10^{-6}x^2 + x + 2$ (3) $f(x) = 10\log x$
 (4) $f(x) = \lfloor x \rfloor$ (5) $f(x) = \lceil x/2 \rceil$
3. Let $f(x) = (x^2 + 1)/(x + 1)$. Then show that $f(x) = O(x)$.
4. Find the least integer n such that $f(x) = O(x^n)$.
 (1) $f(x) = 2x^3 + x^2\log x$ (2) $f(x) = 3x^3 + (\log x)^4$
 (3) $f(x) = (x^4 + x^2 + 1)/(x^3 + 1)$
 (4) $f(x) = (x^4 + 5\log x)/(x^4 + 1)$
5. Find the best corresponding big-O notation.
 (1) $(n^2 + 8)(n + 1)$ (2) $(n\log n + n^2)(n^3 + 2)$
 (3) $(n! + 2^n)(n^3 + \log(n^2 + 1))$ (4) $n\log(n^2 + 1) + n^2\log n$
 (5) $(n\log(n + 1))^2 + (\log(n + 1))(n^2 + 1)$ (6) $n^{2^n} + n^{n^2}$.